

MARCOS MAURÍCIO COSTA DA SILVA

O POTENCIAL DE CAPTAÇÃO E ABASTECIMENTO DE ÁGUA PLUVIAL NA COMUNICADE VILA DE LINDÓIA – MUNICÍPIO DE ITACOATIARA

DISSERTAÇÃO DE MESTRADO

Instituto de Tecnologia Mestrado Profissional em Processos Construtivos e Saneamento Urbano

Dissertação orientada pelo Professor Dr. Ronaldo Lopes Rodrigues Mendes

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA MESTRADO EM PROCESSOS CONSTRUTIVOS E SANEAMENTO URBANO

POTENCIAL DE CAPTAÇÃO E ABASTECIMENTO DE ÁGUA PLUVIAL NA COMUNICADE VILA DE LINDÓIA – MUNICÍPIO DE ITACOATIARA

MARCOS MAURÍCIO COSTA DA SILVA

Manaus-AM

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE TECNOLOGIA MESTRADO EM PROCESSOS CONSTRUTIVOS E SANEAMENTO URBANO

POTENCIAL DE CAPTAÇÃO E ABASTECIMENTO DE ÁGUA PLUVIAL NA COMUNICADE VILA DE LINDÓIA – MUNICÍPIO DE ITACOATIARA

MARCOS MAURÍCIO COSTA DA SILVA

Dissertação de Mestrado apresentada ao Programa de Mestrado Profissional em Processos Construtivos e Saneamento Urbano, Área de Concentração Saneamento Urbano, da Universidade Federal do Pará como requisito para a obtenção do grau de Mestre.

Orientador: Prof. Dr. Ronaldo Lopes Rodrigues Mendes

Coorientador: Prof. Dr. Jandecy Cabral Leite

Manaus-AM 2015

POTENCIAL DE CAPTAÇÃO E ABASTECIMENTO DE ÁGUA PLUVIAL NA COMUNICADE VILA DE LINDÓIA – MUNICÍPIO DE ITACOATIARA

MARCOS MAURICIO COSTA DA SILVA

Esta dissertação será julgada para a obtenção do título de Mestre em Processos Construtivos e Saneamento Urbano, Área de Concentração Saneamento Urbano, pelo Programa de Profissional em Processos Construtivos e Saneamento Urbano (PPCS) do Instituto de Tecnologia (ITEC) da Universidade Federal do Pará (UFPA).

	Aprovado em, dede 2015.
	Prof. Dr. Denio Ramam Carvalho de Oliveira
	(Coordenador do PPCS)
	`
	Prof. Dr. Ronaldo Lopes Rodrigues Mendes
	(Orientador – UFPA)
SÃO EX	AMINADORA
SÃO EX	Prof. Dr. João Augusto Pereira Neto
SÃO EX	
SSÃO EX	Prof. Dr. João Augusto Pereira Neto
SSÃO EX	Prof. Dr. João Augusto Pereira Neto
SSÃO EX	Prof. Dr. João Augusto Pereira Neto

"O otimismo é a fé em ação. Nada se pode levar a efeito sem otimismo."

Helen Keller

Dedico este trabalho de dissertação a minha esposa Carla e a minha Pequena Maria Clara, minha razão de viver, minha filha amada, presente Divino, ao meu Querido Pai Rozemar Tavares da Silva, e a minha Querida Mãe Clara Amanda Costa da Silva, que abrilhanta, desde 1996, o Mundo Espiritual, pelas orientações de vida, e ao meu Orientador Professor Doutor Ronaldo Lopes Mendes e ao meu Co-Orientador Professor Doutor Jandecy Cabral, seres humanos responsáveis pelo apoio constante, tanto no aspecto pessoal quanto profissional, ao longo dessa jornada desafiadora e muitas vezes turbulenta, que me fez perceber que o sofrimento é passageiro, mas a vitória é perene.

Agradeço sempre a Deus Todo Poderoso, em primeiro lugar; a minha Família, esteio e fonte de vivificação e ao meu Orientador Professor Dr. Ronaldo Mendes pela forma como conduziu a orientação, o apoio e incentivo constante para a conclusão desta dissertação, ao Corpo Docente da UFPA e ITEGAM, pela construção e disseminação de conhecimento.

RESUMO

A presente pesquisa, em nível de dissertação de mestrado, trata do levantamento do potencial e abastecimento de água de chuva, para uso doméstico, na Comunidade Vila de Lindóia, Interior do Município de Itacoatiara, no Estado do Amazonas, com o consequência abastecimento das residências lá situadas. Esse aproveitamento consiste na utilização de superfícies impermeáveis, por exemplo, telhados, que tem como fim precípuo a coleta dessas águas, em reservatórios, para posterior distribuição. O objetivo é discutir alternativas de uso de água potável a parte da população que não dispõem desse recurso e, quando dispõe, não é de qualidade. E avaliar a viabilidade do aproveitamento de água de chuva para fins potáveis, com descarte das primeiras águas e, assim, diminuir o número de pessoas sem acesso a água de qualidade. Nesse sentido, foi feito levantamento socioeconômico de moradores de 15 (quinze) residências, bem como as formas de abastecimento por eles levadas a cabo, bem como aceites em relação a esta nova proposta, com o respectivo custo. A investigação demonstrou que as pessoas entrevistadas utilizam hipoclorito no tratamento dessa a água servida pelo Serviço de Água e Esgoto e que há vários relatos de doenças de veiculação hídrica. As alternativas viáveis para a Comunidade consistem no aproveitamento, ainda que parcial, do potencial de água pluvial, com descarte das primeira águas, para uso potável.

Palavras-Chaves: gestão e sustentabilidade - captação e manejo de águas pluviais-Comunidade Vila de Lindóia-Itacoatiara-AM.

RESUME

This research, master's thesis level, deals with the survey of potential and rain water supply for domestic use in the Community Vila de Lindóia, Interior municipality of Itacoatiara, State of Amazonas, with the result supply of homes located there. This use consists in the use of impermeable surfaces, e.g., roofs, which aims at preciput the collection of the waters in reservoirs, for further distribution. The aim is to discuss alternatives to the use of drinking water to the population who do not have this capability and, when available, is not quality. And assess the viability of rain water use for drinking purposes, discard the first water and thus reduce the number of people without access to safe water. In this sense, it was made socio-economic survey of residents of fifteen (15) residences as well as the forms of supply by them carried out and accepted in relation to this new proposal, with the respective cost. Research has shown that people interviewed use hypochlorite in treating this water served by Water and Wastewater Services and there are several reports of waterborne diseases. Viable alternatives to the Community consists in the use, even partially, the rainwater potential with discard the first water for potable use.

KEY WORDS: MANAGEMENT AND SUSTAINABILITY - CAPTURE AND MANAGEMENT OF WATER PLUVIAIS- COMMUNITY VILA LINDÓIA

LISTA DE FIGURAS

Figura 1:Ciclo Hidrológico	. 17
Figura 2: Ilustração do Índice de Precipitação Anual	. 19
Figura 3: Localização Vila de Lindóia no Google Maps	. 26
Figura 4: Foto de Residência na Vila da Lindóia em alvenaria	. 26
Figura 5 : Tipo de residência verificada na Vila de Lindóia – AM, em	. 27
Figura 6:Fluxograma de Procedimentos	. 30
Figura 7: Área de Captação	. 33
Figura 8: Relação da altura de precipitação em um receptáculo	X
área de contribuição do telhado.	. 33
Figura 9:Esquema de um sistema de coleta e armazenagem de água pluvial	. 34
Figura 10: Desvio para Eliminação da "Primeira Água"	. 37

LISTA DE TABELAS

Tabela 1:Coeficiente de Runoff adotado por Hofkes e Frasier	35
Tabela 2:Coeficiente de Runoff utilizado Simone May (2004)	35
Tabela 3:Coeficiente de Runoff utilizado na Bélgica por Vaccari et al (2003)	
Tabela 4:Dimensionamento das calhas e tubos de descidas	38
Tabela 5:Descarte da "primeira água"	38
Tabela 6:Índice pluviométrico da estação meteorológica Rio Urubu (mm). Medio	da
mensal	40
Tabela 7: Potencial de aproveitamento água pluvial mês de Janeiro, Métod	do
GPAC/NUMA/UFPA4	41
Tabela 8 : Potencial de aproveitamento água pluvial mês de março - Mês com mai	or
precipitação, Método GPAC/NUMA/UFPA	42
Tabela 9: Potencial de aproveitamento água pluvial mês de agosto. Mês com men	or
índice de precipitação, Método GPAC/NUMA/UFPA4	42
Tabela 10: Síntese de Eficiência do Sistema, para o Método GPAC/NUMA/UFPA	43
Tabela 11: Síntese dos dados GPAC/NUMA/UFPA - Mês de Agosto	46
Tabela 12:Síntese dos dados (Ghisi)	46
Tabela 13:Comparativo de Eficiências	47
Tabela 14:CASA 1 - Cálculo do Reservatório pelo Método Azevedo Neto	
Tabela 15:Proposta Construção	

LISTA DE GRÁFICO

Gráfico 1: Índices Pluviométricos médios, na área objeto do estudo	41
Gráfico 2:Eficiência do Sistema de Abastecimento para o Mês de Janeiro	44
Gráfico 3:Eficiência do Sistema de Abastecimento para o Mês de Março	44
Gráfico 4: Eficiência do Sistema de Abastecimento para o Mês de Agosto	45
Gráfico 5: Eficiência do Sistema de Abastecimento para os Meses de Janeiro, I	Março e
Agosto	45

SUMÁRIO

CAPÍTULO 1	. 14
1.1 -INTRODUÇÃO 1.2 – OBJETIVOS 1.2.1 – Objetivo Geral 1.2.2 - Objetivos Específicos	. 15 . <i>15</i>
1.3 – CONTRIBUIÇÃO E RELEVÂNCIA DO TEMA	. 16
1.4 – REFERENCIAL TEÓRICO 1.5 – O USO SUSTENTÁVEL DOS RECURSOS HÍDRICOS	
CAPÍTULO 2 - MÉTODO E TÉCNICA DE PESQUISA	. 25
2.1 – REGIÃO OBJETO DO ESTUDO	. 27
2.3.1 – Fluxograma de procedimentos	
2.4 – SUPORTE METODOLÓGICO	. 30 32
2.4.2 – Sistema de Abastecimento	35
2.4.3 - Reservatório	
CAPÍTULO 3 – RESULTADOS E DISCUSSÕES	. 39
3.1 – POTENCIAL DE CAPTAÇÃO E AUSÊNCIA DE INFRAESTRUTURA	
3.3 – POTENCIAL DE CAPTAÇÃO LEVANTADO	0
CAPÍTULO IV - CONSIDERACOES FINAIS	. 54
CONCLUSÃO4.1- RECOMENDAÇÃO PARA TRABALHOS FUTUROS	. 55

CAPÍTULO 1

1.1 -INTRODUÇÃO

Em consonância com a Organização das Nações Unidas, mais de bilhão de pessoas sofrem com a falta de acesso a um sistema adequado de abastecimento de água, a considerar o fornecimento módico de apenas 20 litros por pessoa, ao dia, por fontes decorrentes de ligações, poços, nascentes, coletas de água pluvial, etc. Esse acesso, importa sobrelevar, constitui Direitos e Garantias Fundamentais do Homem, reconhecido pela própria ONU e insculpido na nossa Carta Magna, artigo 1º, III, no que pertine ao Princípio da Dignidade da Pessoa Humana. De um lado, tem-se as demandas para atender as necessidades das empresas – sobretudo capitalistas - e do agronegócio; de outro, das pessoas, sejam nas áreas urbanas ou nas comunidades rurais, como é o caso desta pesquisa.

Um sistema de fornecimento de água é concebido pela tomada de parte de um recurso constante em um corpo hídrico, avaliação da qualidade, bombeamento, reservação, seja enterrados, apoiados ou elevados, e distribuição às populações, de acordo com a necessidade e disponibilidade (TOMAZ,2003). Insta destacar que a utilização da água pluvial ocorre desde a antiguidade. Diversos registros de captação e manejo de água foram encontrados, desde a tenra idade, até os tempos hodiernos. Há mais de 2.000 anos já se tinha conhecimento, de acordo com Gnadlinger (2000), sobre um sistema destinado a captação de água, no Deserto de Negev, hoje região geográfica pertencente ao Estado de Israel. Segundo Tomaz (2003), A Pedra Moabita, por exemplo, fincada no Médio Oriente, armazenava água pluvial em torno de 850 a. C.

Segundo Andrade Neto (2013), no Brasil a utilização desse recurso é verificada há séculos, inobstante a captação no meio urbano seja ainda insipiente. Sustenta, igualmente, que a água de chuva será considerada em um futuro bem próximo como o recurso hídrico mais seguro para consumo, fazendo com que as pessoas passem inclusive a bebê-la, dadas as crescentes contaminações dos mananciais.

Esse aproveitamento é de simples entendimento e contempla a utilização de superfícies, em princípio impermeáveis, como telhados, por exemplo, para coletar as águas decorrentes das precipitações em reservatórios, para posterior distribuição.

Scherer (2003) sustenta que prédios públicos, como escolas, por exemplo, constituem fontes importantes para a implementação de sistemas de aproveitamento das águas pluviais para fins não potáveis, a considerar a extensão das áreas de telhados, destinadas a captação.

A problemática lançada nesta dissertação sobre o potencial de utilização de água pluvial para abastecimento, tem escopo no levantamento do potencial de captação dessas águas, e consequente abastecimento da Comunidade localizada na Vila de Lindóia, Zona Rural do Estado do Amazonas, pertencente ao Município de Itacoatiara.

A pesquisa contribui para a diminuição de populações desprovidas de acessa a água de qualidade ou, de forma alternada, para complementar o abastecimento, contribuição que trará no sentido de diminuir o número de pessoas sem acesso a água de qualidade, além de economizar energia. Não se pode olvidar que a formação de conglomerados de pessoas, sejam nas zonas urbanas ou rural, trazem consigo vários problemas de ordem social e ambiental e busca pela implementação desse sistema tem arrimo em uma gestão sustentável, do ponto de vista ambiental. Nesse sentido, Para Mendes (2005), a busca da sustentabilidade de um sistema de abastecimento deve estar envolto em premissas que alcancem o bem-estar social, entre elas: a) acesso facilitado; b) quantidade satisfatória ao seu consumo, c) qualidade dentro dos padrões de potabilidade e d) preço adequado as suas possibilidades de pagamento.

1.2 – OBJETIVOS

1.2.1 – Objetivo Geral

O objetivo geral consiste no estudo sobre o uso de água chuva na Comunidade Vila de Lindóia, no Município de Itacoatiara, às margens do Rio Urubu.

1.2.2 - Objetivos Específicos

- Caracterizar os índices pluviométricos para a região objeto da pesquisa;

- Descrever as áreas de telhado nas edificações na região objeto da pesquisa, juntamente com os perfis dos usuários;
 - Calcular o potencial de água de chuva para a região pesquisada;

1.3 – CONTRIBUIÇÃO E RELEVÂNCIA DO TEMA

Este estudo visa fortalecer as discussões referentes ao desenvolvimento sustentável, mormente no que se refere a gestão ambiental, colocando o Homem no centro das discussões, porquanto não se pode falar em preservar, mas sim, em conservar dentro de uma concepção holística.

A intenção é fomentar a pesquisa nesta área, demonstrando os potenciais de captação de água pluvial e abastecimento, na mencionada comunidade.

1.4 – REFERENCIAL TEÓRICO

A água, um dos elementos fundamentais para a sobrevivência não só do Homem, mas como das demais espécies, constitui requisito para a mantença dos seres animais e vegetais, no Planeta Terra, seja pelo uso doméstico, na agricultura, através das técnicas de irrigação, na indústria, no comércio, etc.

Frise-se que toda a água consumida, pode-se assim dizer, provem da atmosfera, podendo ser encontrada em forma de vapor ou de gotículas Pinto et al (1976). É bastante explorada, sobretudo nos países industrializados, face à refrigeração, produção de energia, transporte de dejetos humanos e rejeitos industriais Mendes (2005).

O ciclo hidrológico constitui-se no caminho ininterrupto da água, tanto nos oceanos, como na área continental, além da atmosfera, conduzido pela força gravitacional e pelo Sol, responsável pela evaporação das águas dos mares e continentes.

Esse volume d'água, na atmosfera, contribui para a formação das nuvens que, ao atingirem determinada dimensão, condensam-se em forma de vapor ou partículas líquidas Pinto *et al* (1976). É composto por duas fases principais, uma atmosférica e

outra terrestre Garcez et al (1988), com armazenamento temporário de água e transporte.

Para Silveira (2001), não se pode falar em estudo dos recursos hídricos, sem conhecimento do ciclo da água, que é caraterizado como um sistema fechado de circulação da água, envolvendo os continentes, oceanos e energia a partir do sol. Sobreleva, ainda, fases fundamentais, como a precipitação, interceptação, infiltração e escoamento na superfície. Todavia, para a presente pesquisa, dar-se-á ênfase as chuvas, ou precipitações, a considerar a formulação da problemática delineada, com a hipótese firmada.

O ciclo hidrológico inicia-se com a evaporação dos oceanos. Esse vapor é transportado pelas massas de ar e depois condensado. Segundo Villela *et al* (1996) *apud* BALBINOT *et al*, (2008), o volume precipitado sobre a superfície terrestre é dissipado seja pela evaporação, infiltração no solo, ou do solo para os rios.

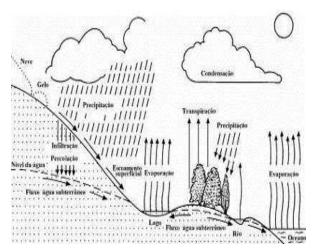
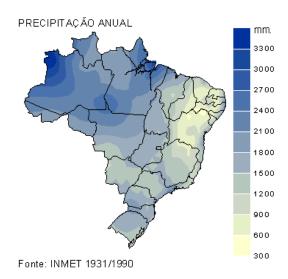


Figura 1 : Ciclo Hidrológico

Fonte: Silveira (2001)


Para Garcez *et al* (1988), precipitação atmosférica pode ser definida como o conjunto de corpos líquidos oriundos da atmosfera quem caem, seja em estado sólido, bem como líquido. Dessa forma, deverão ser consideradas as águas das precipitações, juntamente com a neve, granizo, nevoeiro e geadas, por exemplo.

A chuva, conforme acima disposto, será o objeto precípuo de estudo. Segundo Pinto *et al* (1976), em consonância com a variável responsável pela ascensão da massa de ar, podem ser: Frontais: são as precipitações que ocorrem ao longo da linha de

descontinuidade, com a consequente separação de duas massas de ar de características distintas; Orográficas: situações verificadas quando a massa de ar é forçada a transpor relevos, como montanhas, por exemplo; Convectivas: ocasionadas em decorrência da subida de ar, em virtude das diferenças de temperatura na camada vizinha da atmosfera. São chamadas de tempestades ou trovoadas, com curta duração, caracterizadas por fenômenos elétricos, rajadas de vento e acentuada precipitação.

Em consonância com o entendimento esposado por Garcez *et al* (1988), a aferição das precipitações atmosféricas é feita pelo computo do volume de água obtido em uma determinada área, considerando as seguintes variáveis: Altura de precipitação: é o total de água precipitada, levando-se em consideração uma determinada área. Essa altura pode estar relacionada a uma chuva em específico, ou ao conjunto de precipitações em um certo intervalo de tempo; Duração: é o intervalo compreendido entre o início e término, expressada geralmente em minutos ou em horas; Intensidade: é a velocidade da precipitação, podendo ser expressada em mm/hora ou mm/dia, conforme o caso; Frequência: quantidade de ocorrências de chuvas, em um intervalo de tempo, podendo essas medidas ser levantadas por um pluviômetro que se constitui em um simples receptor, que recolhe o volume hídrico precipitado e o armazena para posterior medição ou pelos pluviógrafos que registram, constantemente, a quantidade de chuva armazenada.

Segundo Ribeiro *et al* (1996), o *quantum* precipitado anualmente, no conjunto de localidades na Bacia Amazônica varia de 227 a 2.884 mm/ano. A Figura 2 apresenta a distribuição (acumulado anual) da precipitação pluviométrica no Brasil, segundo a Normal Climatológica de 1931 a 1990.

Figura 2: Ilustração do Índice de Precipitação Anual Fonte: INMET 1931/1990

Frise-se que o crescimentos demográfico favoreceu o surgimento de concentrações populacionais, sejam em centros urbanos ou no meio rural, ocasionando demandas cada vez maiores por recursos hídricos, no caso, o uso de água potável, para fins domésticos.

Para Mendes (2005), a busca da sustentabilidade de um sistema de abastecimento deve estar envolto em premissas que alcancem o bem-estar social, entre elas: a) acesso facilitado; b) quantidade satisfatória ao seu consumo, c) qualidade dentro dos padrões de potabilidade e d) preço adequado as suas possibilidades de pagamento.

A Amazônia, segundo Mendes (2005), possui cerca 9,7% dos recursos hídricos do planeta e, em que pese a grande disponibilidade desse recurso, há várias restrições pertinentes a qualidade nos meios urbanos, a considerar as deficiências dos sistemas de abastecimento.

Uma das alternativas para reduzir o impacto negativo ambiental é introduzir mecanismos que captem água de chuva, para uso em residências.

A seguir, algumas definições, por Tomaz (2005), importantes para a compreensão do aproveitamento de água de chuva:

Água de chuva: "É a agua coletada durante eventos de precipitação pluviométrica em telhados inclinados ou planos onde não haja passagem de veículos ou

de pessoas. As águas de chuva que caem nos pisos residenciais, comerciais ou industriais não estão inclusas no sistema proposto".

Água não potável: "água não potável consiste no recurso hídrico desprovido das características consignadas nas Portaria n°. 518/2004 e 2912/2011, do Ministério da Saúde".

Área de captação: "Área, em metros quadrados, da projeção horizontal da superfície onde a água é captada".

Coeficiente de *runoff* (C) ou escoamento superficial: "Coeficiente que representa a relação entre o volume total escoado e o volume total precipitado.

Demanda: "A demanda ou consumo de água é a média anual, mensal ou diário, a ser utilizado para fins não potáveis num determinado tempo".

First flush: "Após três dias de seca vai-se acumulando nos telhados, poeiras, folhas, detritos, etc e é aconselhável que esta primeira água seja descartada (first flush). Conforme o uso destinado às águas de chuvas pode ser dispensado o first flush dependendo do projetista. As pesquisas feitas mostram que o first flush varia de 0,4 L/m2 de telhado a 8 L/m2 de telhado conforme o local. Na falta de dados locais adotase o uso do first flush no valor de 2 L/m2 de área de telhado".

Reservatórios ou cisternas: "Deverão ser analisadas as séries históricas e sintéticas das precipitações locais ou regionais sendo aconselhável no mínimo um período de 10 anos de dados a serem analisados.

Os reservatórios ou cisternas podem ser: enterrados, semienterrado, apoiado ou elevado. Os materiais podem ser concreto, alvenaria armada, materiais plásticos como polietileno, PVC, fibra de vidro e aço inox. Sempre serão vedados a luz solar.

Os reservatórios devem ser construídos como se fosse para armazenamento de água potável devendo ser tomadas os devidos cuidados para não contaminar a água de chuva coletada dos telhados.

De acordo com Andrade Neto (2012), as primeira águas da chuva tem papel relevante na sua qualidade. Via de regra, o primeiro milímetro de chuva é suficiente para lavar a atmosfera e a superfície de captação, através de dispositivos automáticos para o descarte, ficando água de boa qualidade.

Nesse sentido caminha o entendimento de Carvalho (2012) ao discorrer sobre a influência do descarte das primeiras águas de chuva sobre a qualidade das águas encaminhadas às cisternas.

De acordo com Tsutiya (2006), para o planejamento e abastecimento de água, a previsão de consumo é uma das variáveis de maior relevância, porquanto a operação e eventual ampliação do sistema depende diretamente da demanda d'água.

Rocha e Barreto (1999 apud TSUTIYA, 2006), obtiveram um perfil de consumo de água de uma residência unifamiliar, localizada em um conjunto de apartamentos da Cidade de São Paulo, chegando a um consumo diário, per capita, de 109 litros por habitante.

1.5 – O USO SUSTENTÁVEL DOS RECURSOS HÍDRICOS

Segundo Lvovitch (1974 apud Schwoerbel, 1979) o Planeta Terra possui 1,370125 bilhões de km3 em água salgada e 0,0883852 bilhões de km3 em água doce, a totalizar 1,4585102 bilhões de km3.

A partir dessa leitura, tem-se que aproximadamente 94% da água disponível no Planeta Terra é salgada, e que os 4% restantes são doces ou salobras. Some-se ao fato de que ¾ da superfície é coberta por água. Impende sobrelevar, por oportuno, que 70% das águas tidas como doces encontram-se em forma de gelo, nas calotas polares e outros 30% em águas subterrâneas, rios, lagos, etc.

Segundo dados das Organizações das Nações Unidas, até o ano de 2025, 1,8 bilhão de pessoas estarão vivendo em estado de escassez absoluta de água doce. Frise-se que o consumo per capita recomendável é de até 110 l / dia por habitante.

Destaca-se que a ocupação desornada do espaço físico, a falta de educação ambiental, aliado ao crescimento populacional estão entre as causas responsáveis pelo uso inadequado dos recursos hídricos. O meio urbano antrópico constitui um dos maiores produtores de resíduos que contaminam os recursos hídricos. A falta de Políticas de Estado, outrossim, bem como a ausência de estrutura pública para coibir esses atos de violação ao Meio Ambiente estão entre os fatores que contribuem para o

mau uso e o aumento do passivo ambiental no que permite aos recursos hídricos.

Segundo a Agência Brasil, levantamentos da ONU mostram que, hodiernamente 768 milhões de pessoas não têm acesso à água tratada, 2,5 bilhões não evoluíram nas melhorias sanitárias e 1,3 bilhão não dispõe de acesso a energia e que, até o Ano de 2030 a população vai necessitar de pelo menos 40% (quarenta por cento) a mais de água.

Impende destacar, consoante defendido Villela *et al* (apud BALBINOT *et al*, 2008), que o Ciclo Hidrológico tem início na evapotranspiração das águas oceânicas e o volume precipitado sobre a superfície terrestre é dissipado seja pela evaporação, infiltração no solo, ou do solo para os rios.

Diferente dos demais recursos, a água fica de forma ininterrupta, no meio ambiente, com alterações em seu estado físico, cuja denominação se convencionou chamar de "Ciclo Hidrológico". Com a incidência dos raios solares, as águas superficiais tendem a evaporar. Na atmosfera, a água, em seu estado gasoso, ao encontrar áreas de pressão e temperatura distintas, forma nuvem e, quando muito pesada, cai em forma de chuva.

Parte desse volume infiltra no solo; a outra, escoa para os lagos, rios, igarapés, mares, etc, compondo fases do ciclo hidrológico, que nunca termina. Em que pese, cientificamente o volume d'água manter-se, podem ocorrer variações – para maior ou para menor – nos diversos estados. É o que se verifica em decorrência do aumento da temperatura no Planeta, isto é, enseja uma maior concentração na forma gasosa da água.

Todavia, em que pese a manutenção do volume d'agua, em suas diversas formas, nas fases do intitulado "Ciclo Hidrológico" emerge o problema concernente a contaminação desse líquido, fruto do uso inadequado em centros urbanos, e falta de Políticas de Estado que se traduzam em punição efetiva dos responsáveis pelo uso inadequado e contaminação da água.

Sobreleva-se que esses recursos muitas vezes são utilizados para eliminar partículas, quedando-se misturada a várias substâncias e imprópria para uso. Quando descartada sem o devido tratamento, acaba por contaminar rios e lagos, trazendo riscos para a saúde de todos os seres viventes.

Diversas são as substâncias que contaminam a água, como fezes, produtos químicos, chumbo, mercúrio, resíduos inorgânicos, nitratos contidos em fertilizantes,

papéis, gorduras, entre outros, muitas vezes com bactérias que causam vários tipos de doenças.

Segundo a UNICEF e a OMS, 88% dos óbitos oriundos da diarreia são causados em decorrência da falta de qualidade / contaminação na água, pela falta de saneamento básico e, ainda, pela carência de higiene.

Frise-se que o uso de água potável, aliado a higiene, são variáveis que contribuem para prevenir a diarreia. A simples lavagem das mãos, por exemplo, com a utilização da água potável, inibe a contaminação e, via de consequência, a mortalidade infantil.

No Brasil, segundo Branco (2006), pesquisador da CPRM, 65% das internações apontam como causa a utilização de água contaminada. A par disso, tem-se que a implementação de políticas públicas voltadas para o saneamento básico, aliada ao uso de água potável podem reduzir a mortalidade de infantes em até 75%.

A própria Constituição Federal Brasileira, em seu artigo 225, assegura que todos tem direito ao meio ambiente ecologicamente equilibrado, bem de uso comum do povo e essencial à sadia qualidade de vida, impondo-se ao Poder Público e à coletividade o dever de defendê-lo e preservá-lo para as presentes e futuras gerações. Corolário desse artigo, está o Princípio da Dignidade da Pessoa Humana, insculpido no artigo 1°, III, do mesmo Diploma Legal.

Levando-se em conta, a par da temática em comento, que a gestão dos recursos naturais, *in casu*, dos recursos hídricos, tornou-se objeto de análise de vários estudiosos, deve-se considerar que o uso racional da água passou a ser uma das preocupações hodiernas, não apenas voltada para a sua qualidade, mas, ainda, pela sua utilização, de forma racional.

Todavia, insta sobrelevar o que é o uso racional da água. Não se deve, obviamente, falar em preservação, mas sim, em conservação ambiental. Nesse sentido, buscar alternativas para reduzir o impacto ambiental negativo se traduz em um dos objetivos perenes de toda a comunidade.

Para Mendes (2005), a busca da sustentabilidade de um sistema de abastecimento deve estar envolto em premissas que alcancem o bem-estar social, entre elas: a) acesso facilitado; b) quantidade satisfatória ao seu consumo, c) qualidade dentro dos padrões de potabilidade e d) preço adequado as suas possibilidades de pagamento.

A Amazônia, ainda de acordo com Mendes (2005), possui cerca 9,7% dos recursos hídricos do planeta e, em que pese a grande disponibilidade desse recurso, há várias restrições pertinentes a qualidade nos meios urbanos, a considerar as deficiências dos sistemas de abastecimento.

Nesse sentido, tem-se como cristalino, a par das considerações insculpidas nesta pesquisa, que o uso de água pluvial, através dos procedimentos de captação, se traduz em vetor de conservação ambiental, na medida em que reusa esse recurso, a partir da coleta, reduzindo, via de consequente, as limitações ao acesso a esse bem, proporciona a possibilidade de se ter um recurso com características de potabilidade e reduz a retirada da água de rios e outras fontes hídricas.

CAPÍTULO 2 - MÉTODO E TÉCNICA DE PESQUISA

2.1 - REGIÃO OBJETO DO ESTUDO

Segundo Paes *et al* (2011), o trecho da Rodovia Estadual AM-010, compreendido entre o Município de Rio Preto da Eva e a Vila de Lindóia, já no Município de Itacoatiara, ambos no Estado do Amazonas, constitui-se num interflúvio entre os Rios Preto e Urubu.

Sob o prisma hidrológico, a partir do km 124 até a Vila de Lindóia, no Km 183, a rodovia entrecorta 6 (seis) igarapés, sendo 3 (três) de primeira ordem pertencente a Bacia do Rio Urubu, 2 (dois) da Bacia do Rio Negro e 1 (um) de segunda ordem próximo a Vila Lindóia integrado a Bacia do Rio Urubu.

Quanto a geomorfologia, a AM-010 entre os Km 77 e 124 apresenta altitude média em torno de 79 a 107m, e a rodovia no sentido Rio Preto – Vila de Lindóia apresenta significativa redução de altitude.

A Região objeto do presente estudo é a Comunidade de Lindóia, Vila pertencente ao Município de Itacoatiara, localizada no Interior do Estado do Amazonas. Em Itacoatiara, segundo o IBGE, existia uma população, em 2014, de 97.714 habitantes, inclusas áreas urbana e rural.

A Vila de Lindóia, renova-se, pertence ao Município de Itacoatiara, o qual encontra-se localizado na Região Centro-Leste do Estado do Amazonas, na Mesorregião Central, em área de baixo planalto, com latitude 12°44′26" Leste e a uma longitude 60°08′45" Oeste. Tem uma área de 8.600 km² e seu território tem limites com as Cidades de Manaus, Urucará, Rio Preto da Eva, Nova Olinda do Norte, Silves, Itapiranga e São Sebastião do Uatumã . Está situado, portanto, na Região Metropolitana de Manaus.

Segundo dados obtidos junto ao Serviço Autônomo de Água e Esgoto de Vila de Lindóia (2014), 454 residências são atendidas por esse serviço, o que corresponde a aproximadamente 90% (noventa por cento) das habitações do local.

Figura 3: Localização Vila de Lindóia no Google Maps Fonte:Base Vetorial do Google Maps

As habitações analisadas são residências típicas da Amazônia, a maioria construída em madeira, sendo algumas em alvenaria.

O material do telhado é constituído por fibrocimento, com áreas que variaram de 23,816 m2 a 113,850 m2.

Figura 4: Foto de Residência na Vila da Lindóia em alvenaria. Fonte: COSTA DA SILVA, Marcos Maurício

Figura 5 : Tipo de residência verificada na Vila de Lindóia – AM, em madeira

Fonte: COSTA DA SILVA, Marcos Maurício

2.2 – MÉTODO

A presente pesquisa foi realizada na Comunidade de Lindóia, Vila localizada no Interior do Município de Itacoatiara, Estado do Amazonas, ocasião em que foram levantadas áreas concernentes aos telhados de algumas residências, no total de 15 (quinze) unidades habitacionais, traduzindo-se em um estudo de caso.

O método aplicado foi, de certa forma, híbrido, porquanto dedutivo a partir de uma premissa maior, qual seja, a admissão inicial de viabilidade do potencial de captação de água de chuva, naquela comunidade, até convergir para estudo específico das residências levantadas, levando-se a confirmação da premissa. Todavia, realizou a indução Aristotélica ao considerar dados individuais reais levantados em campos e posterior análise, a partir de dentro do sistema de interpretação de dados.

Esse método acompanhou as diretrizes definidas pelo Grupo de Pesquisas Aproveitamento de Água de Chuva na Amazônia – GPAC-Amazônia/NUMA/UFPA Coordenado pelo Professor Doutor Ronaldo Mendes, aplicado para pequenas comunidades, como é o caso, onde é possível a aferição da área real de captação e o número de habitantes das residências.

Convém destacar, ainda, que para Gressler (2003), existem duas abordagens em potencial, quais sejam, a quantitativa e a qualitativa. A primeira caracteriza-se pela formulação de uma hipótese principal, podendo-se desdobrar-se em secundárias, conforme estratégia montada pelo pesquisador. A partir dessa construção, busca-se coletar dados e informações que podem receber tratamento estatístico. Cria uma interface entre causa e efeito, e pende de confirmação, através de testes, demonstração e formulações de modelos matemáticos.

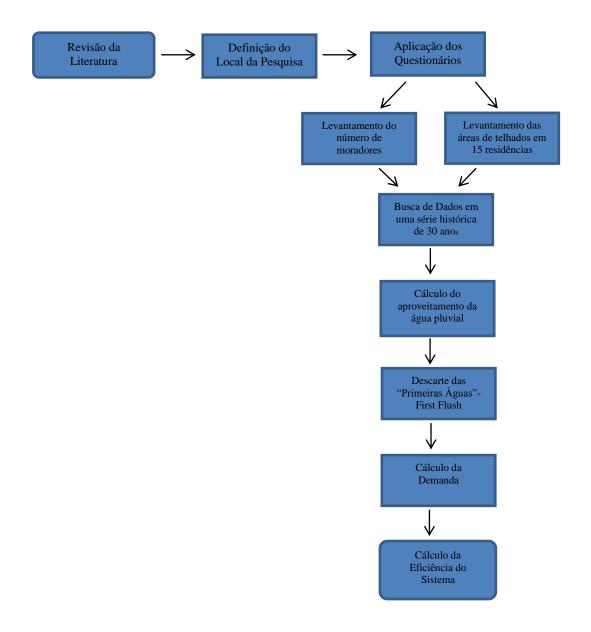
2.3 – SISTEMÁTICA DE PESQUISA

- Estudo dos Índices Pluviométricos na Região alvo da pesquisa. Foram objeto de estudo os dados secundários de uma Série Histórica de 30 (trinta) anos, a partir de 1978, até 2009, com exclusão dos anos de 2002 e 2003, a considerar falhas no levantamento da estação meteorológica, fornecidos pela ANA, via Sistema de Informações Hidrológicas, na Estação Meteorológica do Rio Urubu, Código da Estação 358200.
- Levantamento real e não estatístico das áreas de captação de águas pluviais, segundo Tomaz (2003). Isso implicou na medição dos telhados de 15 (quinze) residências, projetando-as na horizontal, a fim de minimizar o erro.
- Avaliação do tipo de telhas utilizada nas coberturas das residências. Isso foi importante, na medidas em que, a depender do material utilizado, implicará em uma maior ou menor absorção de volume precipitado, a influenciar, via de consequência, no total do volume escoado. A partir dessa razão (quociente), teremos um número que será utilizado como multiplicador (coeficiente) redutor do volume de aproveitamento. A ele dá-se o nome de Coeficiente de Runoff. Segundo Cardoso (2009), sistemas que fazem uso de telhas cerâmicas, naturalmente permeáveis em relação às metálicas, captam uma quantidade d'água inferior aos de telhas metálicas, em semelhante contexto.
- Cálculo do potencial de aproveitamento do volume de água pluvial, eliminouse as primeira águas, a considerar a sujeira que fica nos telhados das residências. Para tanto, descartou-se o primeiro milímetro d'água, isto é, 1 L/m², de acordo com Andrade Neto (2012).

- Foi utilizado no cálculo da demanda a quantidade de 109 (cento e nove) litros por dia per capita, de consumo, em consonância com Rocha e Barreto (1999), *apud* Tsutiya (2006).

Destaca-se que a pesquisa, em si, é quantitativa, na medida em que busca levantar esse potencial de captação e aproveitamento de água pluvial.

A par dessas amostras, obtivemos os cálculos reais das áreas e dos números dos telhados, bem como o número de pessoas por cada residência. Elaborou-se um questionário para fins de levantamento de dados primários, a serem trabalhos nesta dissertação.


Nessa visita técnica realizada às residências localizadas na Comunidade Vila de Lindóia, no Município de Itacoatiara, Interior do Estado do Amazonas, verificou-se a situação atual no tocante ao abastecimento de água pela Companhia Municipal; identificou-se o potencial de captação de água pluvial, a considerar as áreas reais e características dos telhados dessas casas, bem como a disponibilidade dos moradores em fazer uso desse recurso hídrico e sua viabilidade. Percebeu-se, a par desses dados, que parte do consumo de água poderia advir do manejo decorrente da captação de água pluvial, considerando-se as áreas dos telhados, responsáveis pela captação, somada ao índice pluviométrico para a região e ao número de pessoas que habitam cada residência.

O levantamento de uma série histórica de dados concernentes ao índice pluviométrico também demonstrou a viabilidade da implementação desse sistema de captação de águas pluviais, ainda que considerado o período de maior tempo sem ocorrências de chuvas.

A pesquisa, portanto, consoante já delineado, adotou o método o dedutivo, e quantitativa, na espécie, porquanto voltada para o levantamento dos índices pluviométricos em uma determinada comunidade, dados concernentes a forma de captação desse recurso, áreas reais dos relhados, tipo de telhado e número de pessoas a residir em cada unidade habitacional.

2.3.1 – Fluxograma de procedimentos

Adiante as etapas seguidas para levantamento do potencial de captação e abastecimento de água pluvial:

Figura 6:Fluxograma de Procedimentos Fonte : COSTA DA SILVA, Marcos Maurício

2.4 – SUPORTE METODOLÓGICO

2.4.1 - Aproveitamento do Potencial da Água da Chuva

A falta de água é uma situação recorrente em diversos locais do Planeta, a considerar não somente o consumo e persas excessivos e muitas vezes descontrolado

dos corpos d'água, mas, de igual modo, em decorrência de alterações no clima, poluição e falta de política de conservação dos recursos hídricos.

Destacam-se proposições para conservação da água, a partir de substituição das fontes utilizadas por outras. O uso das águas pluviais nas residências está inserido nesse contexto, podendo não só favorecer a diminuição de despesas com a utilização da água potável, mas, ainda, favorecer a diminuição dos alagamentos, em consonância com Tomaz(1999), *apud* Lima *et al*, (2003).

Importa destacar que ao se fazer o uso de um sistema de captação de água pluvial, tal medida favorecerá a preservação do meio-ambiente, a reduzir, via de consequência, o impacto ambiental negativo.

Esse sistema poderá ser usado, ainda, para suprir necessidade em áreas com deficiência na captação e distribuição da água. De acordo com Lima *et al* (2011), haverá uma redução do custo energético de 25 a 45% do total das operações de sistema de abastecimento tradicional; além disso, uma redução da carga sobre o complexo de drenagem.

Todavia, impende chamar a atenção para a redução dos recursos hídricos na Amazônia Ocidental. No entender de Lima *et al* (2011), os motivos que ensejam a diminuição desse potencial concentram-se no aumento da população, no fracasso de vários sistemas de abastecimento e na própria degradação do meio ambiente, por exemplo.

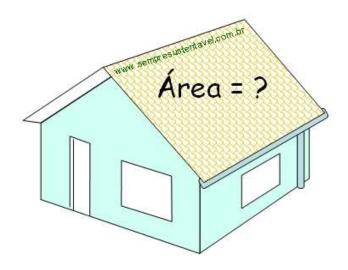
Conforme Flores *et al* (2012), a disponibilidade de recursos hídricos é indispensável para possibilitar o dimensionamento de qualquer sistema de água pluvial, fazendo-se o uso de dados dos volumes e correspondente distribuição ao longo ano, além do levantamento das áreas de telhados.

Para o consumo, deve-se levar em consideração o total de pessoas por domicílio. De acordo com Andrade Neto (2012), um sistema simples destinado ao aproveitamento da água pluvial é formado pela área de receptação do telhado, a qual, na sequencia, canaliza para um coletor ou calha, até chegar nos dutos vertidas e, na sequencia, para o reservatório / cisterna.

Importante o descarte da primeira água, pois, em regra, traz consigo resíduos e sujeiras que ficam depositadas nas áreas dos telhados.

Constituem-se, portanto, elementos indispensáveis para o potencial da captação de água pluvial o levantamento dos dados concernentes a precipitação, a áreas dos telhados, demanda pelo líquido e quantidade de habitantes por unidade residencial.

$2.4.1.1 - \text{Área do telhado (m}^2$)


A maneira pela água dar-se-á a coleta da água pluvial será pelos telhados, direcionado o volume através de calhas, tornando o sistema, além de simples, bastante econômico.

Segundo Andrade Neto (2009), os telhados podem ter inclinações e ser constituídos de fibrocimento, cerâmica, zinco, concreto armado, entre outros.

Flores *et al* (2011) sustentam ser imprescindível a identificação das áreas dos telhados, a considerar ser esta a base de cálculo para se chegar ao volume de águas a ser captada, considerando, ainda, os índices pluviométricos, para um determinado período.

Convém observar que a técnica apresentada por Flores, tendo como escopo vertentes estatísticas, a partir de tomadas de projeções de áreas com o auxilio de bases vetoriais do Google, não refletem situações reais. Na presente pesquisa, a considerar a obtenção de dados levantados em campo, correspondentes a situações verificadas in loco, ter-se-á um sistema mais eficaz.

No que pertine a sistemática de medição, após separação das abas dos telhados, deve-se considerar o comprimento, bem como o tamanho da inclinação, com a projeção, na horizontal, aplicando-se o resultado da multiplicação da hipotenusa encontrada para o ângulo reto com o cosseno do ângulo, ou ainda, de forma mais simples, apenas com a aplicação do Teorema de Pitágoras.

Figura 7:Área de Captação Fonte:http://www.sempresustentavel.com.br

Fonte:http://www.sempresustentavel.com.br

Destaca-se que para cada 1 mm de chuva, observada em um pluviômetro, por exemplo, tem-se o equivalente a 1 litro / m² de área de telhado.

Como restou consignado, a armação destinada à apreensão de água já está

construída nas casas e, em algumas situações, as calhas também, fazendo desse sistema um procedimento simples e viável, do ponto de vista econômico.

Convém destacar, no que concerne ao material utilizado para confeccionar as telhas, os respectivos índices de permeabilidade das telhas. Isso porque, em alguns casos, poderá ocorrer infiltrações / absorções do líquido, resultando, assim, em perdas, o que não ocorre com telhas metálicas, por exemplo.

Segundo Cardoso (2009), sistemas que fazem uso de telhas cerâmicas, naturalmente permeáveis em relação às metálicas, captam uma quantidade d'água inferior aos de telhas metálicas, em semelhante contexto.

2.4.2 – Sistema de Abastecimento

Figura 9:Esquema de um sistema de coleta e armazenagem de água

pluvial

Fonte:http://www.sempresustentavel.com.br

Para se ter uma estrutura destinada ao aproveitamento das águas pluviais, faz-se necessária a existência de um telhado, a fim de efetivar a coleta da água, pela área, direcionada para um coletor, denominado "calha" o qual, através seções horizontais e verticais, direcionada a água para reservatórios suspensos ou subterrâneos.

As intituladas "primeiras águas", sobreleva-se, deverão ser descartadas, através de um mecanismo de "desvio", geralmente denominado *by pass*.

2.4.2.1 – Condutores

A fim de canalizar a água captada pelo telhado, imprescindível o uso de guias, nas posições verticais e horizontais. Podem ser utilizados equipamentos de polietileno ou metálicos.

O coeficiente de escoamento superficial ou de deflúvio, igualmente, chamado de coeficiente de *runoff*, é utilizado para minorar o potencial decorrente do quociente obtido pela razão entre o volume d'água escoado superficialmente pelo volume total da água precipitada.

Abaixo os coeficientes de Runoff adotados por Hofkes e Frasier (1996):

Tabela 1:Coeficiente de Runoff adotado por Hofkes e Frasier

MATERIAL	COEFICIENTE DE RUNOFF
Telhas cerâmicas	0,8 a 0,9
Telhas corrugadas de metal	0,7 a 0,9

Fonte: Hofkes e Frasier (1996)

Tabela 2:Coeficiente de Runoff utilizado Simone May (2004)

MATERIAL	MÁXIMO	MÍNIMO
Telhado: metal, cascalho, asfalto, fibra de vidro, fibrocimento	0,95	0,90
Pavimentação: concreto, asfalto	1,00	0,90
Solo: c/ vegetação	0,75	0,20
Sem vegetação	0,60	0,10
Gramado: c/ solo arenoso	0,10	0,05
Com solo barrento	0,17	0,13

Fonte: Simone May (2004)

Tabela 3:Coeficiente de Runoff utilizado na Bélgica por Vaccari et al (2003)

TIPO DE TELHADO	COEFICIENTE DE RUNOFF
Cobertura plana com argila expandida	0,6
Cobertura plana com betume	0,7 a 0,8
Telhado inclinado com telha cerâmica	0,75 a 0,9
Telhado inclinado com telha esmaltada	0,9 a 0,95
Telhado inclinado com betume	0,8 a 0,95

Fonte: Vaccari et al (2003).

2.4.2.2 - Utilização de peneiras para retenção de resíduos

Importante destacar o uso de peneira, que reterá, na saída do condutor ou antes da chegada no reservatório, matérias orgânicas como folhas, por exemplo, evitando, assim, eventuais contaminações.

Dessa forma, devem ser colocadas nas calhas e na entrada do reservatório ou cisterna, para afastar a possibilidade de obstrução, a considerar a presença de resíduos sólidos, como folhas, por exemplo, que venham juntamente com a água, recomendandose telas de 0,2 a 1,00 mm (TOMAZ, 2009).

2.4.3 - Reservatório

Nota-se que a água pluvial pode ser utilizada de formas variadas, conforme a necessidade. Tal característica tem reflexo no aspecto econômico, e, de igual modo, na adequação do sistema de abastecimento. De um lado está a limitação desse recurso; de outro, o aumento constante da demanda por ele.

No entender de BERTOLO (2006), as formas de reservação da água constitui um dos pontos de maior importância, além de ter o maior custo, no sistema de abastecimento. Deve-se ser levado em consideração o local de instalação bem como a capacidade.

O dimensionamento do reservatório dependerá da quantidade de demanda pela

água. Algumas variáveis são fundamentais. Ei-las:

- a) Saber o volume necessário de utilização da água;
- b) Levantar os índices pluviométricos na região;
- c) Capacidade do reservatório / cisterna;
- d) Área dos telhados, destinada a captação;
- e) Tipo da superfície dos telhados, com aplicação dos coeficientes de Runoff;

Destaca-se, ainda, que as chamadas "primeiras águas" vêm com resíduos, porquanto, além de lavar a atmosfera baixa e, via de consequência, a superfície de captação, poderá trazer microrganismos, daí ser necessário a sua eliminação.

Segundo Andrade (2012), deve-se eliminar, para fins de estudo específico, 1L/m². É recomendado, todavia, pela NBR 15527/07 o descarte da primeira chuva de 2 mm, quando não se dispõe de dados.

Todavia, insta destacar, conforme discutido no 9º Simpósio de Captação e Manejo de Água Pluvial, ocorrido na Cidade de Feira de Santana, em Agosto de 2014, é suficiente o descarte do primeiro milímetro de água pluvial, na maioria dos casos.

A palestra foi proferida pelo Professor Dr. Cícero Onofre de Andrade Neto (2014), da Universidade Federal do Rio Grande do Norte.

Figura 10: Desvio para Eliminação da "Primeira Água" Fonte: http://www.sempresustentavel.com.br

Tabela 4:Dimensionamento das calhas e tubos de descidas

	TABELA D			DAS CALHAS resustentavel.c	E TUBOS DE DI com.br	ESCIDAS	
Diämetro do Tubo D (mm)		seção circula	ores horizont ar (formato) co itros/minuto		Capacidade dos condutores verticais (tubos de descida da água das calhas)		
	Tipo de mate		, fibrocimento rrosos	Vazão	Área do te	lhado (m²)	
	Inclinação 0,5% (0,5cm/m)	Inclinação 1% (1cm/m)	Inclinação 2% (2cm/m)	Inclinação 4% (4cm/m)	litros/segundo (l/s)	Chuva muito forte 150 mm/h	Chuva forte 120 mm/h
50	32	45	64	90	0,57	14	17
75	95	133	188	267	1,76	42	53
100	204	287	405	575	3,78	90	114
125	370	521	735	1.040	7,00	167	212
150	602	847	1.190	1.690	11,53	275	348
200	1.300	1.820	2.570	3.650	25,18	600	760

Obs.: os dados foram baseados na norma NBR 10844/89 Instalações Prediais de Águas Pluviais da ABNT

Fonte: http://www.sempresustentavel.com.br

Tabela 5:Descarte da "primeira água"

Fonte	Volume de descarte	Local
Tomaz (2003)	0,4	Flórida
Tomaz (2003)	1	Guarulhos (SP)
Coombes (2002)	1	-
Texas Guide to Rainwater	0,5	Texas
Harvesting, 1997		

Fonte: Andrade (2012)

CAPÍTULO 3 – RESULTADOS E DISCUSSÕES

3.1 – POTENCIAL DE CAPTAÇÃO E AUSÊNCIA DE INFRAESTRUTURA

O Potencial de captação de água da chuva e capacidade de coleta, através dos telhados, medidos *in loco*, foi realizado na Vila de Lindóia, Município de Itacoatiara, Estado do Amazonas, conforme detalhamento a seguir.

Na Região objeto do estudo, uma série de problemas concernentes a ausência de infraestrutura, mormente no que consiste a fragilidade no sistema de tratamento de água pelo Serviço de Abastecimento de Água e Esgoto, esgoto deficitário, muitas vezes despejados no próprio solo, sem sistema de tratamento algum, sequer primário, foi constatada.

No que consiste ao abastecimento d'água, verificou-se apenas procedimentos - informados pela comunidade - de tratamento bacteriológico da água, com hipoclorito. Casos de diarreia e outras doenças foram reportados, na pesquisa socioeconômica.

Não verificado, ainda, sistemas para coleta, segregação e tratamento adequado dos resíduos sólidos.

Percebeu-se, todavia, que todas as residências eram abastecidas com energia elétrica e com água.

A pesquisa de campo mostrou que as áreas de captação medida no local variaram de 23,816 m2 a 113,850 m2.

As residências apresentaram condições razoáveis para a implementação do projeto, sendo os telhados de fibrocimento.

3.2 – SÉRIE HISTÓRICA DE TRINTA ANOS(1978-2009), DOS ÍNDICES PLUVIOMÉTRICOS

Dados pluviométricos em uma Série Histórica, nos últimos trinta anos, colhidos na Estação Meteorológica do Rio Urubu, Coordenadas com Latitude 12°44'26"

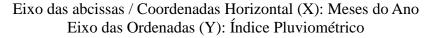
Leste e a uma Longitude 60°08'45" Oeste, foram utilizados na pesquisa, conforme abaixo.

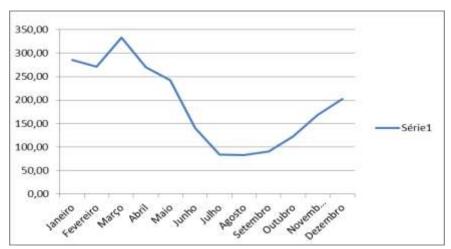
Tabela 6:Índice pluviométrico da estação meteorológica Rio Urubu (mm). Medida mensal

_	1	1	1	1	1	1		1		1	1	1	, ,
ANO	JAN	FEV	MARCO	ABRIL	MAIO	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Total
1978	209,80	284,40	297,90	334,90	266,30	54,10	86,70	47,30	107,60	133,40	85,00	183,70	2091,10
1979	266,50	239,00	345,40	290,00	281,40	67,20	55,20	25,90	77,60	87,90	113,60	183,40	2033,10
1980	124,80	128,20	163,80	320,40	131,80	106,40	113,80	114,20	41,80	215,20	234,00	239,60	1934,00
1981	505,10	260,20	168,20	133,80	155,60	91,60	65,80	114,20	91,60	53,40	267,40	113,80	2020,70
1982	226,80	281,80	262,60	210,00	216,20	58,20	41,50	44,20	49,40	67,40	81,30	318,20	1857,60
1983	210,00	176,60	213,80	98,90	115,10	150,20	17,80	245,40	93,60	156,60	118,10	296,60	1892,70
1984	349,00	268,40	335,40	198,00	208,80	138,90	130,60	74,80	184,40	195,80	131,20	261,20	2476,50
1985	256,60	270,40	315,60	222,50	294,80	141,60	101,60	146,00	34,40	190,80	151,10	288,80	2414,20
1986	214,80	351,40	433,40	369,70	201,10	91,60	82,60	4,60	105,60	209,90	225,00	206,00	2495,70
1987	405,80	215,40	286,20	349,10	168,80	135,00	86,60	138,90	104,20	97,70	56,40	121,60	2165,70
1988	296,80	228,20	250,20	164,40	438,40	291,60	111,00	41,60	29,00	224,00	211,00	255,40	2541,60
1989	251,80	366,00	376,50	257,60	388,20	322,00	118,20	69,00	138,20	148,00	317,40	157,00	2909,90
1990	253,80	147,40	331,00	487,40	254,80	101,60	194,60	45,20	50,00	119,40	60,20	245,30	2290,70
1991	251,00	141,10	314,40	134,00	262,00	133,80	97,40	111,20	67,40	120,40	22,40	112,30	1767,40
1992	107,50	365,80	232,00	211,50	150,60	53,80	134,20	121,10	43,00	33,70	163,10	294,70	1911,00
1993	309,40	280,40	389,10	344,40	120,50	115,00	75,30	161,30	99,00	189,40	246,80	183,80	2514,40
1994	305,10	360,90	342,10	245,50	357,70	132,00	67,80	103,00	139,10	218,80	66,80	157,10	2495,90
1995	211,70	244,30	319,00	265,90	298,00	98,30	70,40	42,70	66,10	46,50	311,30	168,70	2142,90
1996	253,60	292,40	456,60	345,70	364,10	178,60	63,60	100,70	146,60	100,30	357,00	88,90	2748,10
1997	394,00	276,90	445,20	238,90	169,90	66,80	18,30	46,60	29,00	76,40	198,30	159,50	2119,80
1998	318,20	188,30	158,80	234,40	242,60	143,60	123,40	67,90	93,80	133,30	155,50	186,40	2046,20
1999	355,60	416,50	551,20	467,50	441,50	234,80	96,20	97,80	136,00	188,40	154,70	205,10	3345,30
2000	351,70	222,00	405,90	292,10	231,10	112,50	122,40	46,90	142,40	83,90	112,50	94,30	2217,70
2001	456,30	192,90	342,50	246,60	114,10	272,20	81,20	24,00	94,40	63,30	167,00	126,50	2181,00
2004	68,90	290,80	477,50	235,10	200,40	121,17	50,80	59,10	100,10	141,10	58,30	125,80	1929,07
2005	170,80	343,10	418,50	272,90	170,10	102,20	47,90	13,60	104,00	101,50	235,80	206,60	2187,00
2006	377,60	430,50	259,50	295,40	320,80	131,90	17,80	41,00	90,10	74,40	296,20	312,20	2647,40
2007	406,20	101,40	210,50	229,60	243,20	133,50	92,30	173,60	101,40	66,30	118,60	409,90	2286,50
2008	297,90	315,90	493,70	291,80	256,50	224,90	68,40	114,40	134,40	82,10	259,80	168,40	2708,20
2009	343,00	458,80	388,40	316,20	198,20	213,00	103,80	69,30	30,30	53,00	53,30	214,90	2442,20
Total	8550,10	8139,40	9984,90	8104,20	7262,60	4218,07	2537,20	2505,50	2724,50	3672,30	5029,10	6085,70	68813,57
Média	285,00	271,31	332,83	270,14	242,09	140,60	84,57	83,52	90,82	122,41	167,64	202,86	2293,79

Fonte: Agência Nacional de Águas

Nota (1): O Índice Pluviométrico corresponde a média mensal, em milímetros (mm), de chuva, em uma determinada região.


Nota (2): Excluídos os anos de 2002 e 2003, porquanto apresentaram falhas no levantamento de dados em alguns meses, o que levou o pesquisados a não considera-los.


Nota (3): o Mês de Março apresentou maior média pluviométrica, com 332,83 mm.

Nota (4): o Mês de Agosto apresentou menor média pluviométrica, com 83,52 mm.

Nota (5): com esses dados secundários, tem-se o volume de chuvas que servirá para demonstrar o potencial de captação.

Gráfico 1: Índices Pluviométricos médios, na área objeto do estudo.

Fonte: COSTA DA SILVA, Marcos Maurício

3.3 – POTENCIAL DE CAPTAÇÃO LEVANTADO

Abaixo, tabelas mensais sintéticas dessas áreas de captação, com o respectivo potencial dos telhados, calculado de acordo com o método desenvolvido pelo Grupo de Pesquisa de Água de Chuva na Amazônica / NUMA/UFPA.

Foi considerado o descarte das primeiras águas, segundo Andrade (2012), considerando uma série histórica de 30 (trinta) anos:

Tabela 7: Potencial de aproveitamento água pluvial mês de Janeiro, Método GPAC/NUMA/UFPA

Residên cia	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice Pluviométrico Médio Janeiro	Coleta – Litros	Descarte 1 mm x Área x10	Aproveita mento (L)
1	2	3	58,569	285,00	16692,165	585,69	16.106,48
2	2	3	56,580	285,00	16125,3	565,80	15.559,50
3	2	4	41,950	285,00	11955,75	419,50	11.536,25
4	3	4	53,909	285,00	15364,065	539,09	14.824,98

5	2	3	84,475	285,00	24075,375	844,75	23.230,63
6	6	7	57,645	285,00	16428,825	576,45	15.852,38
7	4	6	65,160	285,00	18570,6	651,60	17.919,00
Residên cia	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice Pluviométrico Médio Janeiro	Coleta – Litros	Descarte 1 mm x Área x10	Aproveita mento (L)
8	5	6	45,790	285,00	13050,15	457,90	12.592,25
9	3	4	113,850	285,00	32447,25	1138,50	31.308,75
10	1	1	57,730	285,00	16453,05	577,30	15.875,75
11	4	8	30,459	285,00	8680,815	304,59	8.376,23
12	3	5	30,685	285,00	8745,225	306,85	8.438,38
13	3	4	26,572	285,00	7573,02	265,72	7.307,30
14	2	3	23,816	285,00	6787,56	238,16	6.549,40
15	2	5	25,488	285,00	7264,08	254,88	7.009,20

Tabela 8 : Potencial de aproveitamento água pluvial mês de março – Mês com maior precipitação, Método GPAC/NUMA/UFPA

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio março	Coleta - Litros	Descarte 1 mm x Área x10	Aproveitamento (L)
1	2	3	58,569	332,83	19493,52	585,69	18907,830
2	2	3	56,580	332,83	18831,52	565,80	18265,720
3	2	4	41,950	332,83	13962,22	419,50	13542,720
4	3	4	53,909	332,83	17942,53	539,09	17403,440
5	2	3	84,475	332,83	28115,81	844,75	27271,060
6	6	7	57,645	332,83	19185,99	576,45	18609,540
7	4	6	65,160	332,83	21687,2	651,60	21035,600
8	5	6	45,790	332,83	15240,29	457,90	14782,390
9	3	4	113,850	332,83	37892,7	1138,50	36754,200
10	1	1	57,730	332,83	19214,28	577,30	18636,980
11	4	8	30,459	332,83	10137,67	304,59	9833,080
12	3	5	30,685	332,83	10212,89	306,85	9906,040
13	3	4	26,572	332,83	8843,959	265,72	8578,239
14	2	3	23,816	332,83	7926,679	238,16	7688,519
15	2	5	25,488	332,83	8483,171	254,88	8228,291

Fonte: COSTA DA SILVA, Marcos Maurício

Tabela 9: Potencial de aproveitamento água pluvial mês de agosto. Mês com menor índice de precipitação, Método GPAC/NUMA/UFPA

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio agosto	Coleta – Litros	Descarte 1 mm x 10	Aproveitamento (L)
1	2	3	58,569	83,52	4891,683	585,69	4305,993
2	2	3	56,580	83,52	4725,562	565,80	4159,762
3	2	4	41,950	83,52	3503,664	419,50	3084,164
4	3	4	53,909	83,52	4502,48	539,09	3963,390
5	2	3	84,475	83,52	7055,352	844,75	6210,602
6	6	7	57,645	83,52	4814,51	576,45	4238,060
7	4	6	65,160	83,52	5442,163	651,60	4790,563
8	5	6	45,790	83,52	3824,381	457,90	3366,481
9	3	4	113,850	83,52	9508,752	1138,50	8370,252
10	1	1	57,730	83,52	4821,61	577,30	4244,310
11	4	8	30,459	83,52	2543,936	304,59	2239,346
12	3	5	30,685	83,52	2562,811	306,85	2255,961
13	3	4.	26,572	83,52	2219,293	265,72	1953,573
14	2	3	23,816	83,52	1989,112	238,16	1750,952
15	2	5	25,488	83,52	2128,758	254,88	1873,878

A considerar o consumo per capita / dia de 109 litros, segundo Rocha e Barreto (1999), *apud* Tsutiya (2006) descartando-se o primeiro milímetro d'água, de acordo com Andrade Neto (2012), e adotando como critério uma frequência mensal de 10 (dez) eventos de chuva, deve-se eliminar, para fins de estudo específico, 1L/m², tem-se as seguintes situações constatadas, para os Meses de Janeiro, Março e Agosto, as quais serão apresentadas a título de memorial de cálculo.

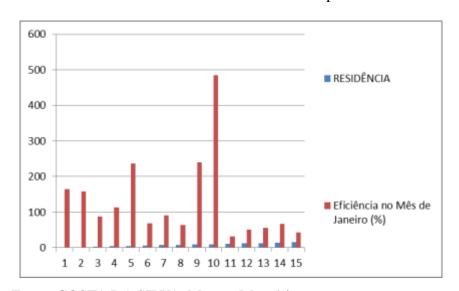
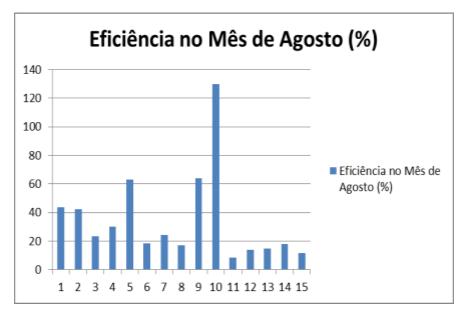

A seguir, tabela sintética com a eficiência do sistema, para os meses em destaque, com o respectivo gráfico e comentários acerca desses resultados:

Tabela 10: Síntese de Eficiência do Sistema, para o Método GPAC/NUMA/UFPA

RESIDÊNCIA	Eficiência no Mês de Janeiro (%)	Eficiência no Mês de Março (%)	Eficiência no Mês de Agosto (%)
1	164,18	192,74	43,89
2	158,61	186,19	42,4
3	88,19	103,54	23,57
4	113,34	133,05	30,3
5	236,81	277,99	63,31
6	69,25	81,3	18,51

7	91,33	107,22	24,41	
	Eficiência no Mês de	Eficiência no Mês de Março	Eficiência no Mês de Agosto	
RESIDÊNCIA	Janeiro (%)	(%)	(%)	
8	64,18	75,34	17,16	
9	239,36	281	63,99	
10	485,5	569,94	129,8	
11	32,02	37,59	8,56	
12	51,61	60,59	13,8	
13	55,87	65,58	14,94	
14	66,76	78,37	17,85	
15	42,87	50,33	11,46	

Gráfico 2: Eficiência do Sistema de Abastecimento para o Mês de Janeiro



Fonte: COSTA DA SILVA , Marcos Maurício

Gráfico 3:Eficiência do Sistema de Abastecimento para o Mês de Março

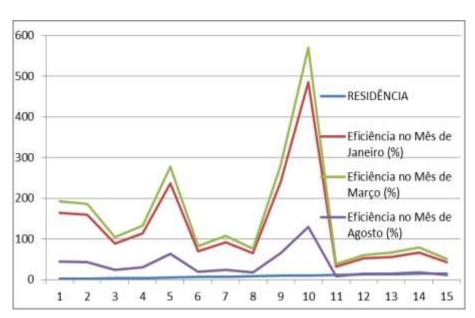


Gráfico 4:Eficiência do Sistema de Abastecimento para o Mês de Agosto

Fonte: COSTA DA SILVA , Marcos Maurício

Gráfico 5: Eficiência do Sistema de Abastecimento para os Meses de Janeiro, Março e Agosto

Fonte: COSTA DA SILVA , Marcos Maurício

Comparação entre a metodologia de Ghisi e a metodologia GPAC/NUMA/UFPA, sem considerar o *first flush* (descarte primeiras águas):

Tabela 11: Síntese dos dados GPAC/NUMA/UFPA - Mês de Agosto

Residência	Pessoas	Área (m²)	Índ. Pluv (mm)	Demanda	Aproveitament o(L)	Consumo	Eficiência (%)
1	3	58,569	83,52	9810	4891,68288	109	49,8642
2	3	56,58	83,52	9810	4725,5616	109	48,1709
3	4	41,95	83,52	13080	3503,664	109	26,7864
4	4	53,909	83,52	13080	4502,47968	109	34,4226
5	3	84,475	83,52	9810	7055,352	109	71,92
6	7	57,645	83,52	22890	4814,5104	109	21,0332
7	6	65,16	83,52	19620	5442,1632	109	27,7378
8	6	45,79	83,52	19620	3824,3808	109	19,4923
9	4	113,85	83,52	13080	9508,752	109	72,6969
10	1	57,73	83,52	3270	4821,6096	109	147,45
11	8	30,459	83,52	26160	2543,93568	109	9,72452
12	5	30,685	83,52	16350	2562,8112	109	15,6747
13	4	26,572	83,52	13080	2219,29344	109	16,9671
14	3	23,816	83,52	9810	1989,11232	109	20,2764
15	5	25,488	83,52	16350	2128,75776	109	13,0199

Tabela 12:Síntese dos dados (Ghisi)

Residênc ia	Pesso as	Área (M²)	Índ. Pluv (MM)	Demanda	Aproveitamen to(L)	Consumo	Eficiência (%)
1	3	117,4569	83,52	9810	9810	109	100
2	3	117,4569	83,52	9810	9810	109	100
3	4	156,6092	83,52	13080	13080	109	100
4	4	156,6092	83,52	13080	13080	109	100
5	3	117,4569	83,52	9810	9810	109	100
6	7	274,06609	83,52	22890	22890	109	100
7	6	234,91379	83,52	19620	19620	109	100
8	6	234,91379	83,52	19620	19620	109	100
9	4	156,6092	83,52	13080	13080	109	100
10	1	39,152299	83,52	3270	3270	109	100
11	8	313,21839	83,52	26160	26160	109	100
12	5	195,76149	83,52	16350	16350	109	100
13	4	156,6092	83,52	13080	13080	109	100
14	3	117,4569	83,52	9810	9810	109	100
15	5	195,76149	83,52	16350	16350	109	100

Fonte: COSTA DA SILVA, Marcos Maurício

Tabela 13: Comparativo de Eficiências

Residência	GPAC (%)	GPAC (M²)	Ghisi (%)	Ghisi (M²)
1	49,8642495	58,569	100	117,4569
2	48,1708624	56,58	100	117,4569
3	26,786422	41,95	100	156,6092
4	34,4226275	53,909	100	156,6092
5	71,92	84,475	100	117,4569
6	21,0332477	57,645	100	274,06609
7	27,7378349	65,16	100	234,91379
8	19,4922569	45,79	100	234,91379
9	72,6968807	113,85	100	156,6092
10	147,449835	57,73	100	39,152299
11	9,72452477	30,459	100	313,21839
12	15,6746862	30,685	100	195,76149
13	16,9670752	26,572	100	156,6092
14	20,2763743	23,816	100	117,4569
15	13,0199251	25,488	100	195,76149

Os resultados obtidos demonstram ser possível a implementação de um sistema de captação de água pluvial, para pequenas comunidades, como é o caso, a partir da Metodologia desenvolvida pelo Grupo de Pesquisa de Captação de Água de Chuva na Amazônia, do NUMA/UFPA, com um baixo custo, a considerar os valores reais aferidos da área, quantidade de pessoas que residem no imóvel, somados aos dados de índices pluviométricos para a região objeto do estudo.

Dessa forma, partindo-se das duas importantes contribuições dadas a Academia, seja por Flores, através de levantamentos estatísticos, com utilização de bases vetoriais do Google e estimativa das áreas de contribuição, como também por Ghisi, tem-se essa outra metodologia, proposta pelo GPAC/NUMA/UFPA, que consiste, de forma simples, objetiva e direta, como dito acima, em levantar, *in loco*, as áreas reais de contribuição das residências, bem como os números de moradores, buscando, assim, resultados eficientes com custos reduzidos.

A partir daí, afasta-se os dados obtidos com a dedução Ghisiana, porquanto, como restou consignado, traria custos elevados para proposta de implementação, como restou demonstrado com as áreas fictícias necessárias para o método em relevo.

D'outra banda, trabalhar apenas aproximações e modelos estatísticos, conforme proposta de Flores, ao nosso sentir, para pequenas comunidades, não seria viável, pois

muito mais eficiente é levantar as reais áreas de captação e verificar os números de moradores.

Diante dos argumentos susomencionados, percebe-se, claramente, a necessidade de se buscar uma área per capita de telhado, chamado pelo Mestrando, de Área Otimizada, em consonância com os dados pluviométricos obtidos na região objeto do estudo, a fim de viabilizar a implementação do sistema de captação e uso de água pluvial para fins potáveis, total ou parcial, em residências.

3.4 – VIABILIDADE DE IMPLEMENTAÇÃO DE UM SISTEMA DE CAPTAÇÃO DE ÁGUA PLUVIAL, CONSIDERANDO O NÚMERO DE MORADORES E CONSUMO ESTIMADO, COM INCLUSÃO DO CÁLCULO DO RESERVATÓRIO PELO MÉTODO DE AZEVEDO NETO

A par da pesquisa de campo realizada na Comunidade Vila de Lindóia, Interior do Município de Itacoatiara, no Estado do Amazonas, algumas variáveis são indispensáveis, entre elas a obtenção de dados concernente ao volume de precipitação, em uma série de trinta anos, com a que foi utilizada neste trabalho.

De igual modo, a área de captação empregada através dos telhados, e o consumo per capita de água.

Nesse diapasão, utilizou-se planilhas a fim de demonstrar a viabilidade ou não de implementação de um sistema de captação de água pluvial, em conjunto com o sistema de fornecimento de água potável pela companhia.

Na tabela a seguir, constam dados que serão utilizados no Método desenvolvido por Azevedo Neto, cujas variáveis serão igualmente, apresentadas.

Tabela 14:CASA 1 - Cálculo do Reservatório pelo Método Azevedo Neto

Mês	Média mm	Pessoas	Área Telhado (A)	D (t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	3	58,569	9810	191,1491	0	109	2351,0364
Fev	271,31	3	58,569	9810	191,1491	0	109	2351,0364
Mar	332,83	3	58,569	9810	191,1491	0	109	2351,0364
Abr	270,14	3	58,569	9810	191,1491	0	109	2351,0364

Mês	Média mm	Pessoas	Área Telhado (A)	D (t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Maio	242,09	3	58,569	9810	191,1491	0	109	2351,0364
Jun	140,6	3	58,569	9810	191,1491	1	109	2351,0364
Jul	84,57	3	58,569	9810	191,1491	1	109	2351,0364
Ago	83,52	3	58,569	9810	191,1491	1	109	2351,0364
Set	90,82	3	58,569	9810	191,1491	1	109	2351,0364
Out	122,41	3	58,569	9810	191,1491	1	109	2351,0364
Nov	167,64	3	58,569	9810	191,1491	0	109	2351,0364
Dez	202,86	3	58,569	9810	191,1491	0	109	2351,0364
Total	2293,79			117720		5		

Pelo método Azevedo Neto, algumas variáveis são fundamentais, como as seguir delineadas.

A fórmula apresentada por Azevedo Neto consiste no seguinte:

$$V = 0.042 \cdot P \cdot A \cdot T$$

V é o volume de água no reservatório, ou o volume do reservatório de água pluvial (L);

P é a precipitação média anual (mm);

A é a área de captação em projeção no terreno (m²); e

T é o número de meses de pouca chuva ou seca.

Segundo Ghisi *et al* (2011), em artigo intitulado "Comparação de métodos para dimensionamento de reservatórios de água pluvial", a NBR 15.527 (ABNT, 2007) não especifica como determinar o número de meses com pouca chuva. Dessa forma, restou convencionado que os meses de pouco chuva serão aqueles igual ou abaixo de 80% (oitenta por cento) da média pluviométrica.

Total das precipitações no ano: 2.293,79 mm

Média anual das precipitações: 191,14 mm

Meses com pouca chuva: 5 meses

Valor correspondente a 80% da média anual pluviométrica: 152,91 mm

Dados da Casa 1 (Tabela 10):

- (P) Média anual das precipitações: 191,1491 mm
- (A) Área de captação em projeção no terreno: 58,569 m²
- (T) Número de meses com pouca chuva: 5

$$V = 0.042 \cdot P \cdot A \cdot T V = 0.042 \cdot 191.1492 \cdot 58.569 \cdot 5 = 2.351.03 L$$

Convém destacar que para fins de análise de viabilidade de implementação do sistema de captação de água pluvial, na Via de Lindóia, localizada no Interior do Município de Itacoatiara, Estado do Amazonas, levou-se em consideração o consumo per capita ao dia de 109 L/dia, segundo estimativa formulada por Rocha e Barreto (1999), *apud* Tsutiya (2006).

Foi considerada a área de captação dos telhados, cuja demonstração dos cálculos encontram-se nos formulários anexos a esta pesquisa.

De igual modo, foi analisada uma Série Histórica de 30 (trinta) anos, reunida na planilha lançada nas fls. 39, consoante dados fornecidos pela Agência Nacional de Águas.

Também foram estimadas as áreas de reservação, em cisternas, a serem implementadas.

A partir desses dados, tem-se como levantar situações que permitem uma maior eficiência do sistema, a considerar as variáveis acima elencadas, com o consequente descarte das primeiras água, correspondente ao primeiro mm de chuva (ANDRADE NETO, 2012).

Na sequência, planilha com dados propostos para implementação do sistema, com utilização de água pluvial:

Dessa forma, propõe-se a construção de módulos habitacionais, para 4 (quatro) pessoas, com área de pelo menos 23,02 m2 por pessoa, a totalizar 92,09¹ m2 de telhado, para captação de água pluvial.

Tabela 15: Proposta Construção

Mês	Média mm	Pessoas	Consumo Dia	Consumo Mês	Precipitação Anual média	Runoff Fibrocimento	P x Runoff
Jan	285,00	1	109	3270	191,1491	0,900	172,03419
Fev	271,31	1	109	3270	191,1491	0,900	172,03419
Março	332,83	1	109	3270	191,1491	0,900	172,03419
Abril	270,14	1	109	3270	191,1491	0,900	172,03419
Maio	242,09	1	109	3270	191,1491	0,900	172,03419
Junho	140,6	1	109	3270	191,1491	0,900	172,03419
Julho	84,57	1	109	3270	191,1491	0,900	172,03419
Agosto	83,52	1	109	3270	191,1491	0,900	172,03419
Setembro	90,82	1	109	3270	191,1491	0,900	172,03419
Outubro	122,41	1	109	3270	191,1491	0,900	172,03419
Novembro	167,64	1	109	3270	191,1491	0,900	172,03419
Dezembro	202,86	1	109	3270	191,1491	0,900	172,03419
Total	2293,79			39240			

A pesquisa acabou por resultar na proposta de uma metodológica para cálculo da área de captação per capita, a partir de dados indispensáveis para a inserção e obtenção da área.

O cálculo da área proposta, projetada no terreno, será calculada da seguinte forma, segundo metodologia desenvolvida pelo Mestrando, com orientação do Professor Doutor Ronaldo Mendes:

Equações propostas pelo Mestrando:

Equação 1: pouco otimizada, considerando frequência diária de precipitação

Área (m²) / per capita = (Consumo mês per capita + 30 · A · 1mm) / (precipitação média anual x coeficiente de Runoff).

Equação 2: otimizada, considerando pelo menos 10 eventos de precipitação em um período de 30 dias.

Área (m²) / per capita = (Consumo mês per capita + 10 · A · 1mm) / (precipitação média anual x coeficiente de Runoff).

O consumo foi calculado considerando 109 L/Dia por pessoa, em consonância com Rocha e Barreto (1999), *apud* Tsutiya (2006).

Foi aplicado o coeficiente resultado do quociente obtido entre o escoamento superficial pela quantidade de chuva, em telhas de fibrocimento, área projetada no terro, de 0,90.

De igual modo, foi considerado como descarte o primeiro milímetro d'água, considerando, por parâmetros de segurança, uma frequência diária de chuva.

Segundo Andrade Neto (2012), deve-se eliminar, para fins de estudo específico, 1L/m2. É recomendado, todavia, pela NBR 15527/07 o descarte da primeira chuva de 2_mm, quando não se dispõe de dados.

Todavia, insta destacar, conforme discutido no 9º Simpósio de Captação e Manejo de Água Pluvial, ocorrido na Cidade de Feira de Santana, em Agosto de 2014, é suficiente o descarte do primeiro milímetro de água pluvial na maioria dos casos.

A palestra foi proferida pelo Professor Dr. Cícero Onofre de Andrade Neto (2014), da Universidade Federal do Rio Grande do Norte.

Aplicando-se os dados obtidos na equação proposta acima, tem-se a seguinte área per capita para viabilizar o aproveitamento na região objeto do estudo, com 100% (cem por cento) de água pluvial:

Equação 1:

Equação 2:

$$172,03 \cdot A - 10 \cdot A = 3.270$$

$$162,03 A = 3.270$$

$$A = 3.270 / 162,03 = 20,18 \text{ m}^2.$$

Isto significa dizer que, a considerar o consumo de projeto, o descarte das primeiras águas, somadas ao coeficiente de Runoff, juntamente com a média das precipitações anuais, teremos, como proposta, módulos para região com área por morador de 23,02 metros quadrados, projetada no terreno, para aproveitamento de 100% de água pluvial e, ainda, a área de 20,18 M² considerando frequência mensal de 10 eventos de precipitação.

Neste passo, caso o uso de água pluvial seja de 50%, teríamos uma área de telhado per capita de 10,09 m2, dentro da realidade de um projeto institucional, que contemple aproveitamento de água pluvial e fornecida pela Companhia e Saneamento, a ser proposto aos órgãos governamentais.

$$A = 3.270 / 162,03 = 20,18 \text{ M}^2 / 2 = 10,09 \text{ m}^2.$$

Essa equação, tendo como referencial a terceira proposta metodológica apresentada por Mendes e Costa da Silva, apresenta valores mínimos de eficiência em um sistema híbrido, de 50% (cinquenta por cento), o que se justifica dada a sua economia e, ainda, proveitos mínimos dentro de uma concepção real de implementação para construções futuras, destaca-se.

CAPÍTULO IV - CONSIDERACOES FINAIS

CONCLUSÃO

A pesquisa mostrou ser possível a utilização do potencial de água pluvial, para uso doméstico. Os objetivos propostos foram alcançados, porquanto, ao efetivar o levantamento de dados como consumo per capita, índices pluviométricos para a área objeto do estudo, *in loco*, operacionalizando a metodologia desenvolvida pelo GPAC/NUMA/UFPA, parâmetros para o descarte das primeiras águas, bem como constatação dos materiais concernentes aos telhados, restou claro a possibilidade de aproveitamento desse recurso, isto é, concernente a aferição de dados reais levantados no local da pesquisa.

Digo de nota, ainda, foram os resultados obtidos a considerar as situações reais constatadas pelo pesquisador, no que consiste às áreas de captação aferidas — telhados medidos — juntamente com os números de pessoas que habitam cada residência. Isso possibilitou levantar, de forma real, e não aproximada, o real potencial / eficiência desse sistema destinado ao uso de água potável.

Ainda, foi apresentada, para trabalhos futuros, uma proposta de implementação de um sistema de abastecimento, onde, no mínimo, 50% (cinquenta por cento) advirão através da captação de água pluvial, consoante equação proposta, onde foi demonstrado como se chegar a uma área tida como ideal, para fins de aproveitamento, na sua totalidade ou parcialmente, do recurso hídrico em relevo.

Impende sobrelevar, em que pese não se ter observado o uso de mecanismos destinados ao aproveitamento desse recurso, que há potencial para sua implementação, com base nos dados levantados.

O método utilizado foi adequado, a partir de levantamentos de dados reais obtidos em campo, pela sistemática do GPAC/NUMA/UFPA. Ademais, complementouse com a sugestão de uma equação, para fins de levantamento de uma área por pessoa, para otimizar o uso de 100% ou 50% de água pluvial. Ademais, importante consignar o levantamento real feito quanto aos números de moradores para a região.

Os resultados obtidos podem ser sugeridos, a fim de se trabalhar políticas municipais voltadas para a gestão de recursos hídricos, no Município de Itacoatiara, ampliando-se a sua aplicabilidade por meio de criação de politicas públicas, podendo ser utilizada nesta e em outras comunidades de pequeno porte, a partir dessa metodologia que busca levantamentos reais.

De igual modo, apresenta-se, como fruto desse trabalho, módulos residenciais ideias, para construções futuras, em consonância com as variáveis vergastadas.

Este cenário favoreceu o interesse em analisar a relação entre o processo de urbanização e o meio ambiente, tendo como escopo o estudo da Vila de Lindóia, localizada no Município de Itacoatiara, com a finalidade de identificar os potenciais de captação e distribuição de água pluvial, a partir dos índices pluviométricos levantados, áreas das residências e números de habitantes.

Quanto às políticas públicas voltadas para a sustentabilidade, importante mencionar o Programa Água Para Todos, ainda muito insipiente nessa região, o que denota falta de compromisso Governamental, bem como a ausência de Políticas de Estado voltada para a sustentabilidade.

Em que pese a existência de 454 residências assistidas pelo Serviço Autônomo de Água e Esgoto de Itacoatiara, não se viu, renova-se, a implementação de Políticas Públicas voltadas para o uso da água pluvial, na Comunidade Vila de Lindóia, em que pese existir disposição dos moradores em seguir determinadas diretrizes voltadas para o sistema de uso de água de chuva, nas residências, o que demonstra, de qualquer forma, consciência ambiental na área objeto da pesquisa.

Neste diapasão, concluiu-se ser perfeitamente viável a introdução de sistemas voltados para a captação e distribuição de água pluvial, para residências existentes, bem como a construção de módulos residenciais, com áreas pré-calculadas de telhados, atendendo a um determinado número de moradores, a propiciar, via de consequência, um resultado sustentável na medida em que se faria uso de parte desse recurso – água da chuva – para fins potáveis, conservando, via de consequência, o meio ambiente, porquanto advindos – ainda que parcialmente - da captação de água pluvial.

4.1- RECOMENDAÇÃO PARA TRABALHOS FUTUROS

Diante dos dados levantados, ao analisar o potencial de captação de água pluvial, coadunado com o consumo per capita, recomenda-se, em nível governamental, o enquadramento de módulos residenciais, a serem propostos para implementação em comunidades com a Vila de Lindóia, no Município de Itacoatiara, considerando o número de habitantes por módulo, a área e os dados de uma série histórica de trinta anos, de índices pluviométricos, a fim de introduzir módulos sustentáveis, para as comunidades ribeirinhas.

Essa implementação pode ser feita, desde já, nas residências existência, a partir da metodologia trabalhada pelo GPAC/NUMA/UFPA, considerando o levantamento real da área de telhados e os números de morados na região, somadas, ainda, aos dados concernentes aos índices pluviométricos .

No caso de projetos de novas construções, a considerar o consumo estimado, o descarte das primeiras águas, somadas ao coeficiente de Runoff, juntamente com a média das precipitações anuais, teremos, como proposta, módulos para região com área por morador de 23,02 m², projetada no terreno, para aproveitamento de 100% de água pluvial.

Neste passo, caso o uso de água pluvial seja de 50%, teríamos uma área de telhado per capita de 11,51 m², dentro da realidade de um projeto institucional a ser proposto, aos órgãos governamentais. Todavia, tomando por base dez eventos de precipitação mensal, tem-se como área, consoante demonstrada, com eficiência mínima, renova-se, de 50% (cinquenta por cento), de 10,09 m²

REFERÊNCIAS

TOMAZ, Plínio. Aproveitamento de Água de Chuva. 2ª Ed. São Paulo: Navegar. 2003.

TOMAZ, Plínio. Aproveitamento de água de chuva para áreas urbanas e fins não potáveis. 2ª ed.São Paulo:Navegar, 2005.

TOMAZ, Plínio. Aproveitamento de Água de Chuva Para Áreas Urbanas e Fins não Potáveis. São Paulo: Navegar, 2009.

MENDES, Ronaldo Lopes Rodrigues. *Indicadores de sustentabilidade do uso doméstico da água*. Tese de Doutorado, 2005.

ANDRADE NETO, Cícero Onofre. *Aproveitamento Imediato da Água de Chuva*. Revista Eletrônica de Gestão e Tecnologias Ambientais (GESTA), 2013.

PINTO, Nelso L. de Sousa; HOLTZ, Antonio Carlos Tatit; MARTINS, José Augusto; GOMIDE, Francisco Luiz Sibut. *Hidrologia Básica*. 3ª Reimpressão. São Paulo:1986, p. 2 e 8.

GARCEZ, Lucas Nogueira; ALVAREZ, Guillermo A. Costa. *Hidrologia*. 2ª Edição. São Paulo: São Paulo – AP: Edgard Blücher, 1988, p. 2,57 e 61.

SILVEIRA, A. L. *Ciclo Hidrológico e Bacia Hidrográfica*. Porto Alegre: 2ª Ed. UFRGS, 2001, p. 35.

VILLELA, S. M.; MATTOS, A**.** *Hidrologia Aplicada*. São Paulo: Mc Graw Hill, 1975. p.247.

CARVALHO, J. R. S, et al. Influência do descarte das primeiras águas de chuva sobre a qualidade da água encaminhada às cisternas. In: Simpósio Brasileiro de Captação e Manejo de Água de Chuva. Campina Grande, 2012.

BALBINOT, R.; OLIVEIRA, N. K.; VANZETTO, S.C.; PEDROSO, K.; VALÉRIO, A. F. *O Papel da Floresta no Ciclo Hidrológico em Bacias Hidrográficas*. Revista do Setor de Ciências Agrárias e Ambientais.,2008.

RIBEIRO, A; VICTORIA, R. L.; PEREIRA, A.R.; VILLA NOVA, N.A.; MARTINELLI, L.A. *Análise do Regime pluviométrico da Região Amazônica a partir de dados de onze localidades*. Revista Brasileira de Meteorologia, 11(1/2): 25-35, 1996.

ANDRADE NETO, Cícero Onofre de. O Descarte das Primeiras Águas e a Qualidade da Água de Chuva. 8º Simpósio Brasileiro de Captação e Manejo de Águas

de Chuva. Campina Grande: SBCMAC, 2012.

TSUTIYA, Milton Tomoyuki. *Abastecimento de Água*. 3ª Ed. São Paulo: Departamento de Engenharia Hidráulica e Sanitária da Escola Politécnica da Universidade de São Paulo, 2006.p 35 e 36.

ROCHA, A. L; BARRETO, D. *Perfil do consumo de água de uma habitação unifamiliar*. 20° Congresso Brasileiro de Engenharia Sanitária e Ambiental. ABES, Rio de Janeiro, Maio de 1999, p. 36.

GRESSLER, Lori Alice. *Introdução à Pesquisa: projetos e relatórios*. São Paulo: Loyola, 2003.

BROWN, Lester Russel. *Plano B 2.0: Resgatando um planeta sob stress e uma civilização em apuros*. 1ª Ed. em Língua Portuguesa. Lisboa: Earth Police Institute, 2006.

Disponível em: < http://www.onu.org.br/alertando-para-escassez-de-agua-doce-onu-pede-esforcos-globais-para-proteger-recursos-naturais/>, acessado em: 04-05-2014.

Disponível em: http://agenciabrasil.ebc.com.br/geral/noticia/2014-03/onu-populacao-precisara-de-40-mais-de-agua-em-2030>, acesso em: 04-05-2014.

Disponível em: <<u>http://www.unicef.org/brazil/pt/media_16165.htm></u>, acesso em: 04-05-2014

BRASIL. Constituição(1988).48ª Ed. São Paulo: Saraiva,2013.

LIMA, J.A.; DAMBROS, M.V.R.; ANTONIO, M.A.P.M. de; JANSEN, J.G.; MARCHETTO, M.Potencial da economia de água potável pelo uso de água pluvial: análise de 40 cidades da Amazônia. Revista de Engenharia Sanitária e Ambiental,2011.p. 291-298;

FLORES, Rafael. Et al. *Potencial de captação de água de chuva para abastecimento:* o caso da Cidade de Belém (PA, Brasil). São Leopoldo: Estudos Tecnológicos em Engenharia da Unisinos, julho-dezembro, 2012.

Disponível em: <www.sempresustentavel.com.br>, acesso em: 02-08-2014.

Disponível em: http://www.sempresustentavel.com.br/hidrica/aguadechuva/pluvipet3.jpg, acesso em 17-02-2015.

CARDOSO, Manuelle Prado. Viabilidade do Aproveitamento de Água de Chuva em Zonas Urbanas: Estudo de Caso no Município de Belo Horizonte - MG Dissertação (mestrado) - Programa de Pós-graduação em Saneamento, Meio Ambiente e Recursos Hídricos. Universidade Federal de Minas Gerais - MG: 2009.

HOFKES, M. W; FRAZIER, J. G. Runoff coeficients. In: PACEY, A; CULLIS, A.

Rainwater harvesting. London: Intermediate Technology Publications, 1996.

BERTOLO, Elisabete de Jesus Peres. *Aproveitamento da Água da Chuva em Edificações. Dissertação de mestrado*.Porto: Departamento de Engenharia Civil da Faculdade de Engenharia da Universidade do Porto, 2006.

SIMPÓSIO DE CAPTAÇÃO E MANEJO DE ÁGUA PLUVIAL, 9., Feira de Santana, Agosto de 2014.

PAES, C. S. et al. Caracterização Geomorfológica da Rodovia AM 010: Trecho compreendido nas adjacências do Km 124(Rio Preto- Vila de Lindóia/Itacoatiara) – Amazonas/Brasil. Uberlândia: Caminhos de Geografia, 2011.

Disponível

em:<<u>http://ftp.ibge.gov.br/Estimativas_de_Populacao/Estimativas_2014/estimativa_dou_2014.pdf</u>>, acesso em: 25-01-2015.

Disponível em: http://animais.mfrural.com.br/estados/animais-peixes-2-228-amazonas-cidade-itacoatiara.aspx, acesso em: 25-01-2015.

Sistema de Faturamento e Cobranças. Relatório Técnico, Dezembro de 2014.

Serviço Autônomo de Água e Esgoto. Vila de Lindoia – Itacoatiara, 2013.

GNADLINGER, J. A Contribuição da Captação de Água de Chuva para o Desenvolvimento Sustentável do Semiárido Brasileiro – uma abordagem focalizando o povo. In: SIMPÓSIO BRASILEIRO DE CAPTAÇÃO DE ÁGUA DE CHUVA NO SEMIÁRIDO, 3., 2001. Campina Grande-PB. Anais eletrônicos. Campina Grande: ABCMAC, 2001.

SCHERER, F. A. *Uso Racional da Água em Escolas Públicas: Diretrizes Para Secretarias de Educação*. Dissertação. Curso de Pós- Graduação em Engenharia da Construção Civil, Escola Politécnica, Universidade de São Paulo, São Paulo, 2003.

Dados pluviométricos fornecidos pela ANA, via Sistema de Informações Hidrológicas. Estação Meteorológica do Rio Urubu. 2001. Código da Estação 358200.

MAY, Simone. *Estudo da Viabilidade do Aproveitamento de Água de Chuva para Consumo não Potável em Edificações*. 2004. Dissertação (Mestrado em Engenharia), Escola Politécnica da Universidade de São Paulo, São Paulo, 2004.

VACCARI, Karla; FERNANDES, Bruno; DA SILVA, Patrícia; ZANDONADE, Eliana; GONÇALVES, Ricardo. *Estudo do Potencial de Aproveitamento da Água de Chuva para sua Utilização em Edificações na Região Metropolitana de Vitória (ES)*. In: 23° Congresso Brasileiro de Engenharia Sanitária e Ambiental, 2005, Campo Grande.

Disponível em:< http://www.sempresustentavel.com.br/hidrica/aguadechuva/dimensionamento-das-

calhas-e-condutores-verticais.jpg>, acesso em:02/08/2014

LVOVITCH, M.I. *Os Recursos Hídricos do Planeta e o seu Futuro*, Russian Academy of Sciences, Moscow, 1974.

SCHWOERBEL, J. Einführung in die Limnologie, Springer, Berlim, Alemanha, 1979.

BRANCO, Pércio; CHAVES, Mário. *A Mineralogia e alguns de seus minerais raros ou de gênese exótica*. Terræ Didática, 2(1):75-85, 2006.

RUPP, Ricardo; MUNARIM, Ulisses; GHISI, Enedir. Associação Nacional de Tecnologia do Ambiente Construído. *Ambiente Construído*, Porto Alegre, v. 11, n. 4, p. 47-64, out/dez.2011.

APÊNDICES

APÊNDICE A: Tabela 16

Potencial de aproveitamento água pluvial mês de fevereiro

Residência	Pessoas > 12	Total de	Área total	Índice pluviométrico	Coleta –	Descarte	Aproveitamento
	anos	pessoas	telhados	médio fevereiro	Litros	1 mm	(L)
1	2	3	58,569	271,31	15890,3554	58,569	15831,786
2	2	3	56,580	271,31	15350,7198	56,580	15294,140
3	2	4	41,950	271,31	11381,4545	41,950	11339,505
4	3	4	53,909	271,31	14626,0508	53,909	14572,142
5	2	3	84,475	271,31	22918,9123	84,475	22834,437
6	6	7	57,645	271,31	15639,665	57,645	15582,020
7	4	6	65,160	271,31	17678,5596	65,160	17613,400
8	5	6	45,790	271,31	12423,2849	45,790	12377,495
9	3	4	113,850	271,31	30888,6435	113,850	30774,794
10	1	1	57,730	271,31	15662,7263	57,730	15604,996
11	4	8	30,459	271,31	8263,83129	30,459	8233,372
12	3	5	30,685	271,31	8325,14735	30,685	8294,462
13	3	4	26,572	271,31	7209,24932	26,572	7182,677
14	2	3	23,816	271,31	6461,51896	23,816	6437,703
15	2	5	25,488	271,31	6915,14928	25,488	6889,661

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE B:

Tabela 17

Potencial de aproveitamento água pluvial mês de abril

Residência	Pessoas > 12	Total de	Área total	Índice pluviométrico	Coleta -	Descarte	Aproveitamento
residencia	anos	pessoas	telhados		Litros	1 mm	(L)
1	2	3	58,569	270,14	15821,83	58,569	15763,261
2	2	3	56,580	270,14	15284,521	56,580	15227,941
3	2	4	41,950	270,14	11332,373	41,950	11290,423
4	3	4	53,909	270,14	14562,977	53,909	14509,068
5	2	3	84,475	270,14	22820,077	84,475	22735,602
6	6	7	57,645	270,14	15572,22	57,645	15514,575
7	4	6	65,160	270,14	17602,322	65,160	17537,162
8	5	6	45,790	270,14	12369,711	45,790	12323,921
9	3	4	113,850	270,14	30755,439	113,850	30641,589
10	1	1	57,730	270,14	15595,182	57,730	15537,452
11	4	8	30,459	270,14	8228,1943	30,459	8197,735
12	3	5	30,685	270,14	8289,2459	30,685	8258,561
13	3	4	26,572	270,14	7178,1601	26,572	7151,588
14	2	3	23,816	270,14	6433,6542	23,816	6409,838
15	2	5	25,488	270,14	6885,3283	25,488	6859,840

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE C:

Tabela 18

Potencial de aproveitamento água pluvial mês de maio

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio maio	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)			
1	2	3	58,569	242,09	14178,969	58,569	14120,400			
2	2	3	56,580	242,09	13697,452	56,580	13640,872			
3	2	4	41,950	242,09	10155,676	41,950	10113,726			
4	3	4	53,909	242,09	13050,83	53,909	12996,921			
5	2	3	84,475	242,09	20450,553	84,475	20366,078			

6	6	7	57,645	242,09	13955,278	57,645	13897,633
7	4	6	65,160	242,09	15774,584	65,160	15709,424
8	5	6	45,790	242,09	11085,301	45,790	11039,511
9	3	4	113,850	242,09	27561,947	113,850	27448,097
10	1	1	57,730	242,09	13975,856	57,730	13918,126
11	4	8	30,459	242,09	7373,8193	30,459	7343,360
12	3	5	30,685	242,09	7428,5317	30,685	7397,847
13	3	4	26,572	242,09	6432,8155	26,572	6406,243
14	2	3	23,816	242,09	5765,6154	23,816	5741,799
15	2	5	25,488	242,09	6170,3899	25,488	6144,902

APÊNDICE D:

Tabela 19

Potencial de aproveitamento água pluvial mês de junho

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio junho	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)
1	2	3	58,569	140,60	8234,801	58,569	8176,232
2	2	3	56,580	140,60	7955,148	56,580	7898,568
3	2	4	41,950	140,60	5898,17	41,950	5856,220
4	3	4	53,909	140,60	7579,605	53,909	7525,696
5	2	3	84,475	140,60	11877,19	84,475	11792,710
6	6	7	57,645	140,60	8104,887	57,645	8047,242
7	4	6	65,160	140,60	9161,496	65,160	9096,336
8	5	6	45,790	140,60	6438,074	45,790	6392,284
9	3	4	113,850	140,60	16007,31	113,850	15893,460
10	1	1	57,730	140,60	8116,838	57,730	8059,108
11	4	8	30,459	140,60	4282,535	30,459	4252,076
12	3	5	30,685	140,60	4314,311	30,685	4283,626
13	3	4	26,572	140,60	3736,023	26,572	3709,451
14	2	3	23,816	140,60	3348,53	23,816	3324,714
15	2	5	25,488	140,60	3583,613	25,488	3558,125

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE E:

Tabela 20

Potencial de aproveitamento água pluvial mês de julho

	- ************************************									
Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio julho	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)			
1	2	3	58,569	84,57	4953,1803	58,569	4894,611			
2	2	3	56,580	84,57	4784,9706	56,580	4728,391			
3	2	4	41,950	84,57	3547,7115	41,950	3505,762			
4	3	4	53,909	84,57	4559,0841	53,909	4505,175			
5	2	3	84,475	84,57	7144,0508	84,475	7059,576			
6	6	7	57,645	84,57	4875,0377	57,645	4817,393			

7	4	6	65,160	84,57	5510,5812	65,160	5445,421
8	5	6	45,790	84,57	3872,4603	45,790	3826,670
9	3	4	113,850	84,57	9628,2945	113,850	9514,445
10	1	1	57,730	84,57	4882,2261	57,730	4824,496
11	4	8	30,459	84,57	2575,9176	30,459	2545,459
12	3	5	30,685	84,57	2595,0305	30,685	2564,345
13	3	4	26,572	84,57	2247,194	26,572	2220,622
14	2	3	23,816	84,57	2014,1191	23,816	1990,303
15	2	5	25,488	84,57	2155,5202	25,488	2130,032

APÊNDICE F:

Tabela 21

Potencial de aproveitamento água pluvial mês de setembro

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio setembro	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)
1	2	3	58,569	90,82	5319,237	58,569	5260,668
2	2	3	56,580	90,82	5138,596	56,580	5082,016
3	2	4	41,950	90,82	3809,899	41,950	3767,949
4	3	4	53,909	90,82	4896,015	53,909	4842,106
5	2	3	84,475	90,82	7672,02	84,475	7587,545
6	6	7	57,645	90,82	5235,319	57,645	5177,674
7	4	6	65,160	90,82	5917,831	65,160	5852,671
8	5	6	45,790	90,82	4158,648	45,790	4112,858
9	3	4	113,850	90,82	10339,86	113,850	10226,007
10	1	1	57,730	90,82	5243,039	57,730	5185,309
11	4	8	30,459	90,82	2766,286	30,459	2735,827
12	3	5	30,685	90,82	2786,812	30,685	2756,127
13	3	4	26,572	90,82	2413,269	26,572	2386,697
14	2	3	23,816	90,82	2162,969	23,816	2139,153
15	2	5	25,488	90,82	2314,82	25,488	2289,332

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE G:

Tabela 22

Potencial de aproveitamento água pluvial mês de outubro

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio outubro	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)
1	2	3	58,569	122,41	7169,4313	58,569	7110,862
2	2	3	56,580	122,41	6925,9578	56,580	6869,378
3	2	4	41,950	122,41	5135,0995	41,950	5093,150
4	3	4	53,909	122,41	6599,0007	53,909	6545,092
5	2	3	84,475	122,41	10340,585	84,475	10256,110
6	6	7	57,645	122,41	7056,3245	57,645	6998,679

7	4	6	65,160	122,41	7976,2356	65,160	7911,076
8	5	6	45,790	122,41	5605,1539	45,790	5559,364
9	3	4	113,850	122,41	13936,379	113,850	13822,529
10	1	1	57,730	122,41	7066,7293	57,730	7008,999
11	4	8	30,459	122,41	3728,4862	30,459	3698,027
12	3	5	30,685	122,41	3756,1509	30,685	3725,466
13	3	4	26,572	122,41	3252,6785	26,572	3226,107
14	2	3	23,816	122,41	2915,3166	23,816	2891,501
15	2	5	25,488	122,41	3119,9861	25,488	3094,498

APÊNDICE H:

Tabela 23

Potencial de aproveitamento água pluvial mês de novembro Índice Pessoas Total Área pluviométrico Coleta -Descarte Aproveitamento Residência > 12 de total médio Litros 1 mm (L) anos pessoas telhados novembro 1 2 3 58,569 167,64 9818,5072 58,569 9759,938 2 2 3 56,580 9485,0712 56,580 9428,491 167,64 3 2 4 41,950 167,64 7032,498 41,950 6990,548 4 3 4 53,909 167,64 9037,3048 53,909 8983,396 5 2 3 84,475 167,64 84,475 14161,389 14076,914 6 6 7 57,645 167,64 9663,6078 57,645 9605,963 7 4 6 65,160 167,64 10923,422 65,160 10858,262 8 5 45,790 45,790 167,64 7676,2356 6 7630,446 9 3 4 113,850 167,64 19085,814 113,850 18971,964 10 1 1 57,730 167,64 9677,8572 57,730 9620,127 4 11 8 30,459 167,64 5106,1468 30,459 5075,688 12 3 5 30,685 167,64 5144,0334 5113,348 30,685 3 4 26,572 167,64 13 4454,5301 26,572 4427,958 14 2 3 23,816 167,64 3992,5142 23,816 3968,698

Fonte: COSTA DA SILVA, Marcos Maurício

5

25,488

APÊNDICE I:

Tabela 24

Potencial de aproveitamento água pluvial mês de dezembro

167,64

4272,8083

25,488

4247,320

Residência	Pessoas > 12 anos	de	Área total telhados	Índice pluviométrico médio dezembro	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)
1	2	3	58,569	202,86	11881,307	58,569	11822,738
2	2	3	56,580	202,86	11477,819	56,580	11421,239

3	2	4	41,950	202,86	8509,977	41,950	8468,027
4	3	4	53,909	202,86	10935,98	53,909	10882,071
5	2	3	84,475	202,86	17136,599	84,475	17052,124
6	6	7	57,645	202,86	11693,865	57,645	11636,220
7	4	6	65,160	202,86	13218,358	65,160	13153,198
8	5	6	45,790	202,86	9288,9594	45,790	9243,169
9	3	4	113,850	202,86	23095,611	113,850	22981,761

Potencial de aproveitamento água pluvial mês de dezembro(CONT)

Residência	Pessoas > 12 anos	Total de pessoas	Área total telhados	Índice pluviométrico médio dezembro	Coleta - Litros	Descarte 1 mm	Aproveitamento (L)
10	1	1	57,730	202,86	11711,108	57,730	11653,378
11	4	8	30,459	202,86	6178,9127	30,459	6148,454
12	3	5	30,685	202,86	6224,7591	30,685	6194,074
13	3	4	26,572	202,86	5390,3959	26,572	5363,824
14	2	3	23,816	202,86	4831,3138	23,816	4807,498
15	2	5	25,488	202,86	5170,4957	25,488	5145,008

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE J: Tabela 25

CASA 2:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D (t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	3	56,58	9810	191,1491	0	109	2271,195376
Fev	271,31	3	56,58	9810	191,1491	0	109	2271,195376
Março	332,83	3	56,58	9810	191,1491	0	109	2271,195376
Abril	270,14	3	56,58	9810	191,1491	0	109	2271,195376
Maio	242,09	3	56,58	9810	191,1491	0	109	2271,195376
Junho	140,6	3	56,58	9810	191,1491	1	109	2271,195376
Julho	84,57	3	56,58	9810	191,1491	1	109	2271,195376

Agosto	83,52	3	56,58	9810	191,1491	1	109	2271,195376
Setembro	90,82	3	56,58	9810	191,1491	1	109	2271,195376
Outubro	122,41	3	56,58	9810	191,1491	1	109	2271,195376
Novembro	167,64	3	56,58	9810	191,1491	0	109	2271,195376
Dezembro	202,86	3	56,58	9810	191,1491	0	109	2271,195376
Total	2293,79			117720		5		

APÊNDICE K: Tabela 26

Mês	Média mm	Pessoas	Área Telhado (A)	D (t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	4	41,95	13080	191,1491	0	109	1683,927996
Fev	271,31	3	41,95	9810	191,1491	0	109	1683,927996
Março	332,83	3	41,95	9810	191,1491	0	109	1683,927996
Abril	270,14	3	41,95	9810	191,1491	0	109	1683,927996
Maio	242,09	3	41,95	9810	191,1491	0	109	1683,927996
Junho	140,6	3	41,95	9810	191,1491	1	109	1683,927996
Julho	84,57	3	41,95	9810	191,1491	1	109	1683,927996
Agosto	83,52	3	41,95	9810	191,1491	1	109	1683,927996
Setembro	90,82	3	41,95	9810	191,1491	1	109	1683,927996
Outubro	122,41	3	41,95	9810	191,1491	1	109	1683,927996
Novembro	167,64	3	41,95	9810	191,1491	0	109	1683,927996
Dezembro	202,86	3	41,95	9810	191,1491	0	109	1683,927996
Total	2293,79			120990		5		

CASA 3:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE L: Tabela 27

CASA 4:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	4	53,909	13080	191,1491	0	109	2163,977935
Fev	271,31	4	53,909	13080	191,1491	0	109	2163,977935

Março	332,83	4	53,909	13080	191,1491	0	109	2163,977935
Abril	270,14	4	53,909	13080	191,1491	0	109	2163,977935
Maio	242,09	4	53,909	13080	191,1491	0	109	2163,977935
Junho	140,6	4	53,909	13080	191,1491	1	109	2163,977935
Julho	84,57	4	53,909	13080	191,1491	1	109	2163,977935
Agosto	83,52	4	53,909	13080	191,1491	1	109	2163,977935
Setembro	90,82	4	53,909	13080	191,1491	1	109	2163,977935
Outubro	122,41	4	53,909	13080	191,1491	1	109	2163,977935
Novembro	167,64	4	53,909	13080	191,1491	0	109	2163,977935
Dezembro	202,86	4	53,909	13080	191,1491	0	109	2163,977935
Total	2293,79			156960		5		

APÊNDICE M: Tabela 28

CASA 5:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	3	84,475	9810	191,1491	0	109	3390,937247
Fev	271,31	3	84,475	9810	191,1491	0	109	3390,937247
Março	332,83	3	84,475	9810	191,1491	0	109	3390,937247
Abril	270,14	3	84,475	9810	191,1491	0	109	3390,937247
Maio	242,09	3	84,475	9810	191,1491	0	109	3390,937247
Junho	140,6	3	84,475	9810	191,1491	1	109	3390,937247
Julho	84,57	3	84,475	9810	191,1491	1	109	3390,937247
Agosto	83,52	3	84,475	9810	191,1491	1	109	3390,937247
Setembro	90,82	3	84,475	9810	191,1491	1	109	3390,937247
Outubro	122,41	3	84,475	9810	191,1491	1	109	3390,937247
Novembro	167,64	3	84,475	9810	191,1491	0	109	3390,937247
Dezembro	202,86	3	84,475	9810	191,1491	0	109	3390,937247
Total	2293,79			117720		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE N: Tabela 29

CASA 6:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	7	57,645	22890	191,1491	0	109	2313,945873
Fev	271,31	7	57,645	22890	191,1491	0	109	2313,945873

Março	332,83	7	57,645	22890	191,1491	0	109	2313,945873
Abril	270,14	7	57,645	22890	191,1491	0	109	2313,945873
Maio	242,09	7	57,645	22890	191,1491	0	109	2313,945873
Junho	140,6	7	57,645	22890	191,1491	1	109	2313,945873
Julho	84,57	7	57,645	22890	191,1491	1	109	2313,945873
Agosto	83,52	7	57,645	22890	191,1491	1	109	2313,945873
Setembro	90,82	7	57,645	22890	191,1491	1	109	2313,945873
Outubro	122,41	7	57,645	22890	191,1491	1	109	2313,945873
Novembro	167,64	7	57,645	22890	191,1491	0	109	2313,945873
Dezembro	202,86	7	57,645	22890	191,1491	0	109	2313,945873
Total	2293,79			274680		5		

APÊNDICE O: Tabela 30

CASA 7:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	6	65,16	19620	191,1491	0	109	2615,607825
Fev	271,31	6	65,16	19620	191,1491	0	109	2615,607825
Março	332,83	6	65,16	19620	191,1491	0	109	2615,607825
Abril	270,14	6	65,16	19620	191,1491	0	109	2615,607825
Maio	242,09	6	65,16	19620	191,1491	0	109	2615,607825
Junho	140,6	6	65,16	19620	191,1491	1	109	2615,607825
Julho	84,57	6	65,16	19620	191,1491	1	109	2615,607825
Agosto	83,52	6	65,16	19620	191,1491	1	109	2615,607825
Setembro	90,82	6	65,16	19620	191,1491	1	109	2615,607825
Outubro	122,41	6	65,16	19620	191,1491	1	109	2615,607825
Novembro	167,64	6	65,16	19620	191,1491	0	109	2615,607825
Dezembro	202,86	6	65,16	19620	191,1491	0	109	2615,607825
Total	2293,79			235440		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE P: Tabela 31

CASA 8:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	6	45,79	19620	191,1491	0	109	1838,070631
Fev	271,31	6	45,79	19620	191,1491	0	109	1838,070631

Março	332,83	6	45,79	19620	191,1491	0	109	1838,070631
Abril	270,14	6	45,79	19620	191,1491	0	109	1838,070631
Maio	242,09	6	45,79	19620	191,1491	0	109	1838,070631
Junho	140,6	6	45,79	19620	191,1491	1	109	1838,070631
Julho	84,57	6	45,79	19620	191,1491	1	109	1838,070631
Agosto	83,52	6	45,79	19620	191,1491	1	109	1838,070631
Setembro	90,82	6	45,79	19620	191,1491	1	109	1838,070631
Outubro	122,41	6	45,79	19620	191,1491	1	109	1838,070631
Novembro	167,64	6	45,79	19620	191,1491	0	109	1838,070631
Dezembro	202,86	6	45,79	19620	191,1491	0	109	1838,070631
Total	2293,79			235440		5		

Fonte: COSTA DA SILVA, Marcos Maurício **APÊNDICE Q:** Tabela 32

CASA 9:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	4	113,85	13080	191,1491	0	109	4570,088257
Fev	271,31	4	113,85	13080	191,1491	0	109	4570,088257
Março	332,83	4	113,85	13080	191,1491	0	109	4570,088257
Abril	270,14	4	113,85	13080	191,1491	0	109	4570,088257
Maio	242,09	4	113,85	13080	191,1491	0	109	4570,088257
Junho	140,6	4	113,85	13080	191,1491	1	109	4570,088257
Julho	84,57	4	113,85	13080	191,1491	1	109	4570,088257
Agosto	83,52	4	113,85	13080	191,1491	1	109	4570,088257
Setembro	90,82	4	113,85	13080	191,1491	1	109	4570,088257
Outubro	122,41	4	113,85	13080	191,1491	1	109	4570,088257
Novembro	167,64	4	113,85	13080	191,1491	0	109	4570,088257
Dezembro	202,86	4	113,85	13080	191,1491	0	109	4570,088257
Total	2293,79			156960		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE R: Tabela 33 CASA 10:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	1	57,73	3270	191,1491	0	109	2317,357884
Fev	271,31	1	57,73	3270	191,1491	0	109	2317,357884

Março	332,83	1	57,73	3270	191,1491	0	109	2317,357884
Abril	270,14	1	57,73	3270	191,1491	0	109	2317,357884
Maio	242,09	1	57,73	3270	191,1491	0	109	2317,357884
Junho	140,6	1	57,73	3270	191,1491	1	109	2317,357884
Julho	84,57	1	57,73	3270	191,1491	1	109	2317,357884
Agosto	83,52	1	57,73	3270	191,1491	1	109	2317,357884
Setembro	90,82	1	57,73	3270	191,1491	1	109	2317,357884
Outubro	122,41	1	57,73	3270	191,1491	1	109	2317,357884
Novembro	167,64	1	57,73	3270	191,1491	0	109	2317,357884
Dezembro	202,86	1	57,73	3270	191,1491	0	109	2317,357884
Total	2293,79			39240		5		

Fonte: COSTA DA SILVA, Marcos Maurício **APÊNDICE S:** Tabela 34

CASA 11:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	8	30,459	26160	191,1491	0	109	1222,664192
Fev	271,31	8	30,459	26160	191,1491	0	109	1222,664192
Março	332,83	8	30,459	26160	191,1491	0	109	1222,664192
Abril	270,14	8	30,459	26160	191,1491	0	109	1222,664192
Maio	242,09	8	30,459	26160	191,1491	0	109	1222,664192
Junho	140,6	8	30,459	26160	191,1491	1	109	1222,664192
Julho	84,57	8	30,459	26160	191,1491	1	109	1222,664192
Agosto	83,52	8	30,459	26160	191,1491	1	109	1222,664192
Setembro	90,82	8	30,459	26160	191,1491	1	109	1222,664192
Outubro	122,41	8	30,459	26160	191,1491	1	109	1222,664192
Novembro	167,64	8	30,459	26160	191,1491	0	109	1222,664192
Dezembro	202,86	8	30,459	26160	191,1491	0	109	1222,664192
Total	2293,79			313920		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE T: Tabela 35

CASA 12:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	5	30,685	16350	191,1491	0	109	1231,736128
Fev	271,31	5	30,685	16350	191,1491	0	109	1231,736128
Março	332,83	5	30,685	16350	191,1491	0	109	1231,736128

Abril	270,14	5	30,685	16350	191,1491	0	109	1231,736128
Maio	242,09	5	30,685	16350	191,1491	0	109	1231,736128
Junho	140,6	5	30,685	16350	191,1491	1	109	1231,736128
Julho	84,57	5	30,685	16350	191,1491	1	109	1231,736128
Agosto	83,52	5	30,685	16350	191,1491	1	109	1231,736128
Setembro	90,82	5	30,685	16350	191,1491	1	109	1231,736128
Outubro	122,41	5	30,685	16350	191,1491	1	109	1231,736128
Novembro	167,64	5	30,685	16350	191,1491	0	109	1231,736128
Dezembro	202,86	5	30,685	16350	191,1491	0	109	1231,736128
Total	2293,79			196200		5		

APÊNDICE U: Tabela 36

CASA 13:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	4	26,572	13080	191,1491	0	109	1066,634916
Fev	271,31	4	26,572	13080	191,1491	0	109	1066,634916
Março	332,83	4	26,572	13080	191,1491	0	109	1066,634916
Abril	270,14	4	26,572	13080	191,1491	0	109	1066,634916
Maio	242,09	4	26,572	13080	191,1491	0	109	1066,634916
Junho	140,6	4	26,572	13080	191,1491	1	109	1066,634916
Julho	84,57	4	26,572	13080	191,1491	1	109	1066,634916
Agosto	83,52	4	26,572	13080	191,1491	1	109	1066,634916
Setembro	90,82	4	26,572	13080	191,1491	1	109	1066,634916
Outubro	122,41	4	26,572	13080	191,1491	1	109	1066,634916
Novembro	167,64	4	26,572	13080	191,1491	0	109	1066,634916
Dezembro	202,86	4	26,572	13080	191,1491	0	109	1066,634916
Total	2293,79			156960		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE V: Tabela 37

CASA 14:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D(t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	3	23,816	9810	191,1491	0	109	956,0054628
Fev	271,31	3	23,816	9810	191,1491	0	109	956,0054628
Março	332,83	3	23,816	9810	191,1491	0	109	956,0054628
Abril	270,14	3	23,816	9810	191,1491	0	109	956,0054628

Maio	242,09	3	23,816	9810	191,1491	0	109	956,0054628
Junho	140,6	3	23,816	9810	191,1491	1	109	956,0054628
Julho	84,57	3	23,816	9810	191,1491	1	109	956,0054628
Agosto	83,52	3	23,816	9810	191,1491	1	109	956,0054628
Setembro	90,82	3	23,816	9810	191,1491	1	109	956,0054628
Outubro	122,41	3	23,816	9810	191,1491	1	109	956,0054628
Novembro	167,64	3	23,816	9810	191,1491	0	109	956,0054628
Dezembro	202,86	3	23,816	9810	191,1491	0	109	956,0054628
Total	2293,79			117720		5		

APÊNDICE X: Tabela 38

CASA 15:CÁLCULO RESERVATÓRIO PELO MÉTODO AZEVEDO NETO

Mês	Média mm	Pessoas	Área Telhado (A)	D (t)	Precipitação Anual média	Número meses abaixo 80% da média	Consumo Dia	Capacidade Reservatório (L)
Jan	285,00	5	25,488	16350	191,1491	0	109	1023,12173
Fev	271,31	5	25,488	16350	191,1491	0	109	1023,12173
Março	332,83	5	25,488	16350	191,1491	0	109	1023,12173
Abril	270,14	5	25,488	16350	191,1491	0	109	1023,12173
Maio	242,09	5	25,488	16350	191,1491	0	109	1023,12173
Junho	140,6	5	25,488	16350	191,1491	1	109	1023,12173
Julho	84,57	5	25,488	16350	191,1491	1	109	1023,12173
Agosto	83,52	5	25,488	16350	191,1491	1	109	1023,12173
Setembro	90,82	5	25,488	16350	191,1491	1	109	1023,12173
Outubro	122,41	5	25,488	16350	191,1491	1	109	1023,12173
Novembro	167,64	5	25,488	16350	191,1491	0	109	1023,12173
Dezembro	202,86	5	25,488	16350	191,1491	0	109	1023,12173
Total	2293,79			196200		5		

Fonte: COSTA DA SILVA, Marcos Maurício

APÊNDICE Y: Eficiência apurada de potencial de captação nas residências nos meses de Janeiro, Março e Agosto

Residência (1), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$ Área telhado projetada: $58,569 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 58,569 · 285 = 16.692,17 L

Descarte das Primeiras Águas: 58,569 1 10 = 585,69 L

Aproveitamento: 16.692,17 - 585,69 = 16.106,48 L

Resultado: 16.106,48 L - 9.810 L = +6.296,48

Eficiência: 164,18%

Residência (1), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 58,569 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 58,569 · 332,83 = 19.493,52 L

Descarte das Primeiras Águas: 58,569 · 1 · 10 = 585,69 L

Aproveitamento: 19.493,52 - 585,69 = 18.907,83 L

Resultado: 18.907,83 L - 9.810 L = +9.097,83 L

Eficiência: 192,74%

Residência (1), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 58,569 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 58,569 · 83,52 = 4.891,68 L

Descarte das Primeiras Águas: 58,569 · 1 · 10 = 585,69 L

Aproveitamento: 4.891,68 - 585,69 = 4.305,99 L

Resultado: 4.305,99 L - 9.810 L = -5.504,01

Eficiência: 43,89 %

Residência (2), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 56,580 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 56,580 · 285 = 16.125,30 L

Descarte das Primeiras Águas: 56,580 1 10 = 565,80 L

Aproveitamento: 16.125,30 - 565,80 = 15.559,50 L

Resultado: 15.559,50 L - 9.810 L = +5.749,50

Eficiência: 158,61%

Residência (2), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 56,580 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 56,580 · 332,83 = 18.831,52 L

Descarte das Primeiras Águas: 56,580 · 1 · 10 = 565,80 L

Aproveitamento: 18.831,52 - 565,80 = 18.265,72 L

Resultado: 18.265,72 L - 9.810 L = + 8.455,72 L

Eficiência: 186,19%

Residência (2), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 56,580 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 56,580 · 83,52 = 4.725,56 L

Descarte das Primeiras Águas: 56,580 · 1 · 10 = 565,80 L

Aproveitamento: 4.725,56 - 565,80 = 4.159,76 L

Resultado: 4.159,76 L - 9.810 L = -5.650,24

Eficiência: 42,40 %

Residência (3), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: 4 · 109 · 30 = 13.080 L

Área telhado projetada: 41,950 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 41,950 · 285 = 11.955,75 L

Descarte das Primeiras Águas: 41,950 · 1 · 10 = 419,50 L

Aproveitamento: 11.955,75 - 419,50 = 11.536,25 L

Resultado: 11.536,25 L - 13.080 L = -1.543,75

Eficiência: 88,19 %

Residência (3), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: 4 · 109 · 30 = 13.080 L

Área telhado projetada: 41,950 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 41,950 · 332,83 = 13.962,21 L

Descarte das Primeiras Águas: 41,950 · 1 · 10 = 419,50 L

Aproveitamento: 13.962,21 - 419,50 = 13.542,71 L

Resultado: 13.542,71 L - 13.080 L = +462,71 L

Eficiência: 103,54%

Residência (3), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 L$

Área telhado projetada: 41,950 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 41,950 · 83,52 = 3.503,66 L

Descarte das Primeiras Águas: 41,950 · 1 · 10 = 419,50 L

Aproveitamento: 3.503,66 - 419,50 = 3.084,16 L

Resultado: 3.084,16 L - 13.080 L = -9.995,83

Eficiência: 23,57 %

Residência (4), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 L$ Área telhado projetada: $53,909 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm Captação pela área de telhado: 53,909 · 285 = 15.364,06 L Descarte das Primeiras Águas: 53,909 · 1 · 10 = 539,09 L

Aproveitamento: 15.364,06 - 539,09 = 14.824,97 L

Resultado: 14.824,97 L - 13.080 L = +1.744,97

Eficiência: 113,34 %

Residência (4), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 \text{ L}$ Área telhado projetada: $53,909 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm Captação pela área de telhado: 53,909 · 332,83 = 17.942,53 L

Descarte das Primeiras Águas: 53,909 · 1 · 10 = 539,09 L

Aproveitamento: 17.942,53 - 539,09 = 17.403,44 L

Resultado: 17.403,44 L - 13.080 L = +4.323,44 L

Eficiência: 133,05%

Residência (4), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 \text{ L}$ Área telhado projetada: $53,909 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 53,909 · 83,52 = 4.502,47 L

Descarte das Primeiras Águas: 53,909 · 1 · 10 = 539,09 L

Aproveitamento: 4.502,47 - 539,09 = 3.963,38 L

Resultado: 3.963,38 - 13.080 = -9.116,61

Eficiência: 30,30 %

Residência (5), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 84,475 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 84,475 · 285 = 24.075,37 L

Descarte das Primeiras Águas: 84,475 · 1 · 10 = 844,75 L

Aproveitamento: 24.075,37 - 844,75 = 23.230,62 L

Resultado: 23.230,62 - 9.810 = +13.420,62 L

Eficiência: 236,81 %

Residência (5), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 84,475 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 84,475 · 332,83 = 28.115,81 L

Descarte das Primeiras Águas: $84,475 \cdot 1 \cdot 10 = 844,75 \text{ L}$

Aproveitamento: 28.115,81 - 844,75 = 27.271,06 L

Resultado: 27.271,06 - 9.810 = +17.461,06 L

Eficiência: 277,99%

Residência (5), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 84,475 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 84,475 · 83,52 = 7.055,35 L

Descarte das Primeiras Águas: 844,75 · 1 · 10 = 844,75 L

Aproveitamento: 7.055,35 - 844,75 = 6.210,60 L

Resultado: 6.210,60 - 9.810 = -3.599,39

Eficiência: 63,31 %

Residência (6), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 7

Demanda: $7 \cdot 109 \cdot 30 = 22.890 L$

Área telhado projetada: 57,645 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 57,645 · 285 = 16.428,82 L

Descarte das Primeiras Águas: 57,645 · 1 · 10 = 576,45 L

Aproveitamento: 16.428,82 - 576,45 = 15.852,37 L

Resultado: 15.852,37 - 22.890 = -7.037,62 L

Eficiência: 69,25 %

Residência (6), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 7

Demanda: $7 \cdot 109 \cdot 30 = 22.890 L$

Área telhado projetada: 57,645 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 57,645 · 332,83 = 19.185,98 L

Descarte das Primeiras Águas: 57,645 · 1 · 10 = 576,45 L

Aproveitamento: 19.185,98 - 576,45 = 18.609,53 L

Resultado: 18.609,53 - 22.890 = -4.280,46 L

Eficiência: 81,30%

Residência (6), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 7

Demanda: $7 \cdot 109 \cdot 30 = 22.890 L$

Área telhado projetada: 57,645 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: $57,645 \cdot 83,52 = 4.814,51 \text{ L}$

Descarte das Primeiras Águas: 57,645 · 1 · 10 = 576,45 L

Aproveitamento: 4.814,51 - 576,45 = 4.238,06 L

Resultado: 4.238,06 - 22.890 = -18.651,93

Eficiência: 18,51 %

Residência (7), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: 6 · 109 · 30 = 19.620 L

Área telhado projetada: 65,160 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 65,160 · 285 = 18.570,60 L

Descarte das Primeiras Águas: 65,160 · 1 · 10 = 651,60 L

Aproveitamento: 18.570,60 - 651,60 = 17.919 L

Resultado: 17.919 - 19.620 = -1.701 L

Eficiência: 91,33 %

Residência (7), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: $6 \cdot 109 \cdot 30 = 19.620 L$

Área telhado projetada: 65,160 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 65,160 · 332,83 = 21.687,20 L

Descarte das Primeiras Águas: 65,160 1 10 = 651,60 L

Aproveitamento: 21.687,20 - 651,60 = 21.035,60 L

Resultado: 21.035,60 - 19.620 = 1.415,60 L

Eficiência: 107,22%

Residência (7), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: 6.109.30 = 19.620 LÁrea telhado projetada: $65,160 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 65,160 · 83,52 = 5.442,16 L Descarte das Primeiras Águas: 65,160 · 1 · 10 = 651,60 L

Aproveitamento: 5.442,16 - 651,60 = 4.790,56 L

Resultado: 4.790,56 –19.620 = - 14.829,43

Eficiência: 24,41 %

Residência (8), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: $6 \cdot 109 \cdot 30 = 19.620 \text{ L}$ Área telhado projetada: $45,79 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 45,79 · 285 = 13.050,15 L

Descarte das Primeiras Águas: $45,79 \cdot 1 \cdot 10 = 457,90 \text{ L}$

Aproveitamento: 13.050,15 - 457,90 = 12.592,25 L

Resultado: 12.592,25 - 19.620 = -7.027,75 L

Eficiência: 64,18 %

Residência (8), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: $6 \cdot 109 \cdot 30 = 19.620 \text{ L}$ Área telhado projetada: $45,79 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 45,79 · 332,83 = 15.240,28 L

Descarte das Primeiras Águas: 45,79 · 1 · 10 = 457,90 L

Aproveitamento: 15.240,28 - 457,90 = 14.782,38 L

Resultado: 14.782,38 – 19.620 = -4.837,61 L

Eficiência: 75,34%

Residência (8), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 6

Demanda: $6 \cdot 109 \cdot 30 = 19.620 \text{ L}$ Área telhado projetada: $45,79 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 45,79 · 83,52 = 3.824,38 L

Descarte das Primeiras Águas: $45,79 \cdot 1 \cdot 10 = 457,90 \text{ L}$

Aproveitamento: 3.824,38 - 457,90 = 3.366,48 L

Resultado: 3.366,48 - 19.620 = -16.253,51

Eficiência: 17,16 %

Residência (9), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: 4· 109 · 30 = 13.080 L

Área telhado projetada: 113,85 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 113,85 · 285 = 32.447,25 L

Descarte das Primeiras Águas: 113,85 · 1 · 10 = 1138,50 L Aproveitamento: 32.447,25 – 1.138,50 = 31.308,75 L

Resultado: 31.308,75 - 13.080 = +18.228,75 L

Eficiência: 239,36 %

Residência (9), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: 4 · 109 · 30 = 13.080 L

Área telhado projetada: 113,85 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 113,85 · 332,83 = 37.892,69 L

Descarte das Primeiras Águas: 113,85 1 10 = 1138,50 L

Aproveitamento: 37.892,69 - 1.138,50 = 36.754,19 L

Resultado: 36.754,19 - 13.080 = +23.674,19 L

Eficiência: 281,00%

Residência (9), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 \text{ L}$ Área telhado projetada: $113,85 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 113,85 · 83,52 = 9.508,75 L Descarte das Primeiras Águas: 113,85 · 1 · 10 = 1138,50 L

Aproveitamento: 9.508,75 - 1.138,50 = 8.370,25 L

Resultado: 8.370,25 - 13.080 = -4.709,74

Eficiência: 63,99 %

Residência (10), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 1

Demanda: $1 \cdot 109 \cdot 30 = 3.270 \text{ L}$ Área telhado projetada: $57,73 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 57,73 · 285 = 16.453,05 L Descarte das Primeiras Águas: 57,73 · 1 · 10 = 577,30 L

Aproveitamento: 16.453,05 - 577,30 = 15.875,75 L

Resultado: 15.875,75 - 3.270 = +12.605,75 L

Eficiência: 485,50 %

Residência (10), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 1

Demanda: $1 \cdot 109 \cdot 30 = 3.270 \text{ L}$ Área telhado projetada: $57,73 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 57,73 · 332,83 = 19.214,27 L

Descarte das Primeiras Águas: $57,73 \cdot 1 \cdot 10 = 577,30 \text{ L}$

Aproveitamento: 19.214,27 - 577,30 = 18.636,97 L

Resultado: 18.636,97 - 3.270 = +15.366,97 L

Eficiência: 569,94%

Residência (10), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 1

Demanda: $1 \cdot 109 \cdot 30 = 3.270 \text{ L}$

Área telhado projetada: 57,73 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 57,73 · 83,52 = 4.821,60 L

Descarte das Primeiras Águas: $57,73 \cdot 1 \cdot 10 = 577,30 \text{ L}$

Aproveitamento: 4.821,60 - 577,30 = 4.244,30 L

Resultado: 4.244,30 - 3.270 = +974,30

Eficiência: 129,80 %

Residência (11), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 8

Demanda: $8 \cdot 109 \cdot 30 = 26.160 L$

Área telhado projetada: 30,459 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 30,459 · 285 = 8.680,81 L

Descarte das Primeiras Águas: $30,459 \cdot 1 \cdot 10 = 304,59 \text{ L}$

Aproveitamento: 8.680,81 - 304,59 = 8.376,22 L

Resultado: 8.376,22 - 26.160 = -17.783,78 L

Eficiência: 32,02 %

Residência (11), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 8

Demanda: $8 \cdot 109 \cdot 30 = 26.160 L$

Área telhado projetada: 30,459 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 30,459 · 332,83 = 10.137,66 L

Descarte das Primeiras Águas: $30,459 \cdot 1 \cdot 10 = 304,59 \text{ L}$

Aproveitamento: 10.137,66 - 304,59 = 9.833,07 L

Resultado: 9.833,07 - 26.160 = -16.326,92 L

Eficiência: 37,59%

Residência (11), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 8

Demanda: $8 \cdot 109 \cdot 30 = 26.160 L$

Área telhado projetada: 30,459 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 30,459 · 83,52 = 2.543,93 L

Descarte das Primeiras Águas: $30,459 \cdot 1 \cdot 10 = 304,59 \text{ L}$

Aproveitamento: 2.543,93 - 304,59 = 2.239,34 L

Resultado: 2.239,34 - 26.160 = -23.920,65

Eficiência: 8,56 %

Residência (12), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: $5 \cdot 109 \cdot 30 = 16.350 L$

Área telhado projetada: 30,685 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 30,685 · 285 = 8.745,22 L

Descarte das Primeiras Águas: 30,685 · 1 · 10 = 306,85 L

Aproveitamento: 8.745,22 - 306,85 = 8.438,37 L

Resultado: 8.438,37 - 16.350 = -7.911,62 L

Eficiência: 51,61 %

Residência (12), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: $5 \cdot 109 \cdot 30 = 16.350 L$

Área telhado projetada: 30,685 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 30,685 · 332,83 = 10.212,88 L

Descarte das Primeiras Águas: 30,685 · 1 · 10 = 306,85 L

Aproveitamento: 10.212,88 - 306,85 = 9.906,03 L

Resultado: 9.906,03 - 16.350 = -6.443,96 L

Eficiência: 60,59%

Residência (12), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: $5 \cdot 109 \cdot 30 = 16.350 L$

Área telhado projetada: 30,685 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 30,685 · 83,52 = 2.562,81 L

Descarte das Primeiras Águas: 30,685 · 1 · 10 = 306,85 L

Aproveitamento: 2.562,81 - 306,85 = 2.255,96 L

Resultado: 2.255,96 - 16.350 = -14.094,03 L

Eficiência: 13,80 %

Residência (13), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 L$

Área telhado projetada: 26,572 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 26,572 · 285 = 7.573,02 L

Descarte das Primeiras Águas: $26,572 \cdot 1 \cdot 10 = 265,72 \text{ L}$

Aproveitamento: 7.573,02 - 265,72 = 7.307,30 L

Resultado: 7.307,30 - 13.080 = -5.772,70 L

Eficiência: 55,87 %

Residência (13), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 \text{ L}$ Área telhado projetada: $26,572 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm Captação pela área de telhado: 26,572 · 332,83 = 8.843,95 L

Descarte das Primeiras Águas: 26,572 · 1 · 10 = 265,72 L

Aproveitamento: 8.843,95 - 265,72 = 8.578,23 L

Resultado: 8.578,23 - 13.080 = -4.501,76 L

Eficiência: 65,58%

Residência (13), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 4

Demanda: $4 \cdot 109 \cdot 30 = 13.080 \text{ L}$ Área telhado projetada: $26,572 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 26,572 · 83,52 = 2.219,29 L Descarte das Primeiras Águas: 26,572 · 1 · 10 = 265,72 L

Aproveitamento: 2.219,29 - 265,72 = 1.953,57 L

Resultado: 1.953,57 - 13.080 = -11.126,42 L

Eficiência: 14,94 %

Residência (14), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 23,816 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 23,816 · 285 = 6.787,56 L

Descarte das Primeiras Águas: 23,816 · 1 · 10 = 238,16 L

Aproveitamento: 6.787,56 - 238,16 = 6.549,40 L

Resultado: 6.549,40 - 9.810 = -3.260,60 L

Eficiência: 66,76 %

Residência (14), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 23,816 m²

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 23,816 · 332,83 = 7.926,67 L

Descarte das Primeiras Águas: 23,816 · 1 · 10 = 238,16 L

Aproveitamento: 7.926,67 - 238,16 = 7.688,51 L

Resultado: 7.688,51 - 9.810 = -2.121,48 L

Eficiência: 78,37%

Residência (14), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 3

Demanda: $3 \cdot 109 \cdot 30 = 9.810 L$

Área telhado projetada: 23,816 m²

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 23,816 · 83,52 = 1.989,11 L

Descarte das Primeiras Águas: 23,816 · 1 · 10 = 238,16 L

Aproveitamento: 1.989,11 - 238,16 = 1.750,95 L

Resultado: 1.750,95 - 9810 = -8.059,05 L

Eficiência: 17,85 %

Residência (15), Mês de Janeiro:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: 5 · 109 · 30 = 16.350 L

Área telhado projetada: 25,488 m²

Índice Pluviométrico Médio para o Mês de Janeiro: 285 mm

Captação pela área de telhado: 25,488 · 285 = 7.264,08 L

Descarte das Primeiras Águas: 25,488 · 1 · 10 = 254,88 L

Aproveitamento: 7.264,08 - 254,88 = 7.009,20 L

Resultado: 7.009,20 - 16.350 = -9.340,80 L

Eficiência: 42,87 %

Residência (15), Mês de Março:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: $5 \cdot 109 \cdot 30 = 16.350 \text{ L}$ Área telhado projetada: $25,488 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Março: 332,83 mm

Captação pela área de telhado: 25,488 · 332,83 = 8.483,17 L

Descarte das Primeiras Águas: 25,488 · 1 · 10 = 254,88 L

Aproveitamento: 8.483,17 - 254,88 = 8.228,29 L

Resultado: 8.228,29 - 16.350 = -8.121,70 L

Eficiência: 50,33%

Residência (15), Mês de Agosto:

Consumo per capita de projeto: 109 l/dia

Total de pessoas: 5

Demanda: $5 \cdot 109 \cdot 30 = 16.350 \text{ L}$ Área telhado projetada: $25,488 \text{ m}^2$

Índice Pluviométrico Médio para o Mês de Agosto: 83,52 mm

Captação pela área de telhado: 25,488 · 83,52 = 2.128,75 L

Descarte das Primeiras Águas: 25,488 · 1 · 10 = 254,88 L

Aproveitamento: 2.128,75 - 254,88 = 1.873,87 L

Resultado: 1,873,87 - 16.350 = -14.476,12 L

Eficiência: 11,46 %

APÊNDICE Y: Formulário aplicado na Comunidade Vila de Lindóia-Itacoatiara-AM.

PESQUISA SOCIOECONÔMICA E DIAGNÓSTICO DO ABASTECIMENTO NA COMUNIDADE VILA DE LINDÓIA-ITACOATIARA-AMAZONAS PROJETO APROVEITAMENTO DA ÁGUA DA CHUVA

DATA: / /2014	DIA DA SEMANA: LOCAL:	
ENTREVISTADOR:	N° QUEST./N° PROC.:	/
FILTRO:	l	
APRESENTAÇÃO:		

P1. N° de pessoas?	P.2 Sexo	P.3 Qual a idade?	P.4 Estudou até que série?	P.5 Tempo de moradia?	P.6 Origem?	P.7 Pratica atividade remunerada?
	1.Masc. M 2. Fem. F	Anotar 99. NS/NR	 Não foi a escola 1° Grau (até a 4ª. Série) incompleto 1° Grau (até a 4ª. Série) completo 1° Grau (até a 8ª. Série) incompleto 1° Grau (de 5ª a 8ª. Série) incompleto 1° Grau (5ª a 8ª. Série) completo 2° Grau incompleto 2° Grau completo Superior incompleto Superior completo Anotar a série NS/NR 	Anotar 99. NS/NR	Anotar estado e cidade 99. NS/NR	1. Sim 2. Não 99. NS/NR

P.8 Quantas crianças menoi	res que 5 anos moram em sua casa?	,
1()1	3 () 3	5. () 5 ou mais
2()2	4 () 4	6. () nenhuma
,	. 12 anos moram em sua casa?	
1()1	3 () 3	5. () 5 ou mais
2()2	4 () 4	6. () nenhuma

P.10 A água para beber e cozinhar consumida em sua casa vem de onde? 1 () direto do rio
P.11 O (a) Sr. (a) faz algum tratamento com essa água? 1 ()Sim 2 () Não. Se NÃO, pular a questão P.13
P.12 Se sim, qual? 1 () ferve
P.13 A qualidade da água usada para beber e cozinhar, o (a) Sr.(a) diria que é: 1 () Ótima 2 () Boa 3 () Regular (±) 4 () Ruim 5 () Péssima 99 () SR/NS
P.14 O (a) Sr. (a) conhece algum sistema de aproveitamento da água da chuva? 1 () Sim 2 () Não. Se NÃO, pular a questão P.16 99 () NS/NR
P.14.1 O que o (a) Sr. (a) sabe do sistema?
P.15 PARA QUEM USA CISTERNA/ÁGUA DA CHUVA. Quantas vezes o (a) Sr. (a) por semana apanha água na cisterna/da chuva. SE NÃO USA, FAZER A QUESTÃO P.16.
1 () Todos os dias 4 () 3 vezes por semana 2 () 1 vez por semana 5 () 4 vezes por semana 3 () 2 vezes por semana 6 () 5 vezes por semana Observação:
P.16 O (a) Sr. (a) consumiria água da chuva para beber e cozinhar? 1 () Sim. Se SIM, pular a questão P.18 2 () Não. Se NÃO, fazer a questão P.17
P.17 Qual aspecto o (a) Sr. (a) não gosta da água da chuva? 1 () Cor 2 () Sabor 3 () Cheiro 99 () NS/NR 101 () NA
P.18 Alguém de sua família já foi acometido por: diarréia, hepatite A (urina escura), dor de barriga, coceira, nos últimos 6 meses. 1 () Sim 2 () Não. Se NÃO, pular a questão P.20 99 () NS/NR

P.19	Se sim, quantas vezes?
1 () até 3 vezes 2() de 4 a 6 vezes 3() 7 ou mais vezes 101 () NA
P.20	O (a) Sr. (a) acha que a água que consome pode provocar alguma doença?
) Sim 2 () Não. Se NÃO, pular a questão P.22 99 () NS/NR resposta for sim. Por quê?
	O (a) Sr. (a) acha que alguém da sua casa já ficou doente pela água que consome?) Sim 2 () Não 99 () NS/NR 101 () NA
Se s	im. Por quê?
	2 Quanto ao acesso à água usada para beber e cozinhar. O que o (a) Sr. (a) considera s fácil ?
3() coletar manualmente água do rio e tratá-la 2() contar com um sistema de a da chuva) retirar água com bomba e tratá-la 4 () comprar água) NS/NR 100 () Outro
P.23 casa	S O (a) Sr. (a) teria interesse em possuir um sistema para usar água da chuva em sua a?
) Sim 2 () Não. Se Não pular para P.29 99. (S/NR
Se N	NÃO, por quê?
disp 1 (Caso você tenha um sistema de aproveitamento da água da chuva, você teria posição de realizar limpeza no telhado, calhas e reservatório?) Sim 2 () Não. Se NÃO pular para P.27 99 (S/NR
P.25	Em caso afirmativo quantas vezes por ano?
1 () menos de 3 vezes2 () 3 vezes 3 () 4 vezes 4 () 6 vezes
5 () 12 vezes 99 () outra. Quantas? 101 () NA

				r esta limpe	eza?) NS/NR	101 () NA
·	ŕ	•	,	<i>))</i> () 115/111C	101 () 1471
P.26	Se sim, c	omo ser	ia?				
P.27 chuy		. (a) est	aria dispos	sto a pagar	por sistema d	e aproveitame	nto da água da
1 () Sim	2 () Não	99 ()	NS/NR	101 () NA
	O (a) Sr. ílias?	(a) ter	ia interesse	e mesmo qu	ie tivesse que	dividir o siste	ema com outra
,) Sim JÃO, por o	,) Não	99 () NS/NR	101 () NA
	, por t						
P.29	O (a) Sr.	(a) poss	ui caixa d a	água ou out	ra coisa que ar	mazene água e	em sua casa?
1 () Sim			2 () Não)	99 () 2	NS/NR
	(MOSTR r por mês'		ΓÃO DE R	ENDA) So	omando a renda	a de toda a sua	família. Qual o
1 () Menos	de R\$	724,00	2 (1.086,00) De R\$ 7	24,00 a R\$	
3 (1.44) Acim 8,00	na de 1	086,00 a F	R\$ 4().	Acima de R\$ 1	1.448,00	
`	() Outro	,	NS/N to? R\$				
P.31	Qual a m	aterial d	e constitui	ção do telha	ıdo? (observaç	ão in locu do e	entrevistador)
1 (4 () palha) cerâmi	ca) fibrocime madeira	nto	100 () outro
	Qual o es		conservaçã		lo? (observaçã	o in locu do en	trevistador)
		-	_	ões físicas o		sistema de apı	roveitamento da

1 () Sim	2 () Não	99 () NS/NR
as ca	ui: indicar posição aproxima racterísticas do entorno (a de corpos d'água).				
Fone	e do entrevistador:				_
Ende Bairr	reço:				
1 – A corretar preench qualidae	Termo que as informações por mim coletadas pessoa entrevistada enquadrou-se de nente anotadas no questionário; 3 — idos; 4 — Tenho conhecimento que pelo de; 5 — Não reproduzi e nem deixei que natura:	s atendem of ntro do pe O question o menos 30	erfil exigido pela ário foi revisado % do material por ou qualquer mater	ade: s cotas; 2 – As informaç cuidadosamente e todos mim coletado será verifica	os campos estão devidamente ado em campo para controle de ados ou terceiros.
	//2014			J	Data.